在《深度探索C++对象模型》里,有一个问题,也是去公司面试的时候那些技术人员常问的问题:在C++中,obj是一个类的对象,p是指向obj的指针,该类里面有个数据成员mem,请问obj.mem和p->mem在实现和效率上有什么不同。
答案是:只有一种情况下才有重大差异,该情况必须满足以下3个条件:
(1)、obj 是一个虚拟继承的派生类的对象
(2)、mem是从虚拟基类派生下来的成员
(3)、p是基类类型的指针
当这种情况下,p->mem会比obj.mem多了两个中间层。(也就是说在这种情况下,p->mem比obj.mem要明显的慢,呵呵)
WHY?
如果好奇心比较重的话,请往下看 :)
1、虚基类的使用,和为多态而实现的虚函数不同,是为了解决多重继承的二义性问题。
举例如下:
class A
{
public:
int a;
};
class B : virtual public A
{
public:
int b;
};
class C :virtual public A
{
public:
int c;
};
class D : public B, public C
{
public:
int d;
};
上面这种菱形的继承体系中,如果没有virtual继承,那么D中就有两个A的成员int a;继承下来,使用的时候,就会有很多二义性。而加了virtual继承,在D中就只有A的成员int a;的一份拷贝,该拷贝不是来自B,也不是来自C,而是一份单独的拷贝,那么,编译器是怎么实现的呢??
在回答这个问题之前,先想一下,sizeof(A),sizeof(B),sizeof(C),sizeof(D)是多少?(在32位x86的linux2.6下面,或者在vc2005下面)
在linux2.6下面,结果如下:sizeof(A) = 4; sizeof(B) = 12; sizeof(C) = 12; sizeof(D) = 24
sizeof(B)为什么是12呢,那是因为多了一个指针(这一点和虚函数的实现一样),那个指针是干嘛的呢?
那么sizeof(D)为什么是24呢?那是因为除了继承B中的b,C中的c,A中的a,和D自己的成员d之外,还继承了B,C多出来的2个指针(B和C分别有一个)。再强调一遍,D中的int a不是来自B也不是来自C,而是另外的一份从A直接靠过来的成员。
如果声明了D的对象d: D d;
那么d的内存布局如下:
vb_ptr: 继承自B的指针
|
int b: 继承自B公有成员
|
vc_ptr:继承自C的指针
|
int c: 继承自C的共有成员
|
int d: D自己的公有成员
|
int a: 继承自A的公有成员
|
那么以下的用法会发生什么事呢?
D dD;
B *pb = &dD;
pb->a;
上面说过,dD中的int a不是继承自B的,也不是继承自C的,那么这个B中的pb->a又会怎么知道指向的是dD内存中的第六项呢?
那就是指针vb_ptr的妙用了。原理如下:(其实g++3.4.3的实现更加复杂,我不知道是出于什么考虑,而我这里只说原理,所以把过程和内容简单化了)
首先,vb_ptr指向一个整数的地址,里面放的整数是那个int a的距离dD开始处的位移(在这里vb_ptr指向的地址里面放的是20,以字节为单位)。编译器是这样做的:
首先,找到vb_ptr(这个不用找,因为在g++中,vb_ptr就是B*中的第一项,呵呵),然后取得vb_ptr指向的地址的内容(这个例子是20),最后把这个内容与指针pb相加,就得到pb->a的地址了。
所以说这种时候,用指针转换多了两个中间层才能找到基类的成员,而且是运行期间。
由此也可以推知dD中的vb_ptr和vc_ptr的内容都是一样的,都是指向同一个地址,该地址就放20(在本例中)
如下的语句呢:
A *pa = &dD;
pa->a = 4;
这个语句不用转换了,因为编译器在编译期间就知道他把A中的成员插在dD中的那个地方了(在本例中是末尾),所以这个语句中的运行效率和dD.a是一样的(至少也是差不多的)
这就是虚基类实现的基本原理。
注意的是:那些指针的位置和基类成员在派生类成员中的内存布局是不确定的,也就是说标准里面没有规定int a必须要放在最后,只不过g++编译器的实现而已。c++标准大概只规定了这套机制的原理,至于具体的实现,比如各成员的排放顺序和优化,由各个编译器厂商自己定~