接下来逐步A掉里面的题。
贴个DC3的模版。
/****后缀数组模版****/ #define F(x)((x)/3+((x)%3==1?0:tb)) //F(x)求出原字符串的suffix(x)在新的字符串中的起始位置 #define G(x)((x)<tb?(x)*3+1:((x)-tb)*3+2) //G(x)是计算新字符串的suffix(x)在原字符串中的位置,和F(x)为互逆运算 int wa[N],wb[N],wv[N],WS[N]; int sa[N*3] ; int rank1[N],height[N]; int r[N*3]; int c0(int *r,int a,int b) { return r[a]==r[b] && r[a+1]==r[b+1] && r[a+2]==r[b+2]; } int c12(int k,int *r,int a,int b) { if(k==2) return r[a]<r[b] || ( r[a]==r[b] && c12(1,r,a+1,b+1) ); else return r[a]<r[b] || ( r[a]==r[b] && wv[a+1]<wv[b+1] ); } void sort(int *r,int *a,int *b,int n,int m) { int i; for(i=0; i<n; i++) wv[i]=r[a[i]]; for(i=0; i<m; i++) WS[i]=0; for(i=0; i<n; i++) WS[wv[i]]++; for(i=1; i<m; i++) WS[i]+=WS[i-1]; for(i=n-1; i>=0; i--) b[--WS[wv[i]]]=a[i]; return; } //注意点:为了方便下面的递归处理,r数组和sa数组的大小都要是3*n void dc3(int *r,int *sa,int n,int m) { //rn数组保存的是递归处理的新字符串,san数组是新字符串的sa int i , j , *rn = r+n , *san = sa+n , ta = 0 ,tb = (n+1)/3 , tbc = 0 , p; r[n] = r[n+1] = 0; for(i=0; i<n; i++) { if(i%3!=0) wa[tbc++]=i; //tbc表示起始位置模3为1或2的后缀个数 } sort(r+2,wa,wb,tbc,m); sort(r+1,wb,wa,tbc,m); sort(r,wa,wb,tbc,m); for(p=1,rn[F(wb[0])]=0,i=1; i<tbc; i++) rn[F(wb[i])]=c0(r,wb[i-1],wb[i])?p-1:p++; if(p<tbc) dc3(rn,san,tbc,p); else { for(i=0; i<tbc; i++) san[rn[i]]=i; } //对所有起始位置模3等于0的后缀排序 for(i=0; i<tbc; i++) { if(san[i]<tb) wb[ta++]=san[i]*3; } if(n%3==1) //n%3==1,要特殊处理suffix(n-1) wb[ta++]=n-1; sort(r,wb,wa,ta,m); for(i=0; i<tbc; i++) wv[wb[i]=G(san[i])]=i; //合并所有后缀的排序结果,保存在sa数组中 for(i=0,j=0,p=0; i<ta&&j<tbc; p++) sa[p]=c12(wb[j]%3,r,wa[i],wb[j])?wa[i++]:wb[j++]; for(; i<ta; p++) sa[p]=wa[i++]; for(; j<tbc; p++) sa[p]=wb[j++]; return; } //height[i]=suffix(sa[i-1])和suffix(sa[i])的最长公共前缀,也就是排名相邻的两个后缀的最长公共前缀 void calheight(int *r,int *sa,int n) { int i,j,k=0; for(i=1; i<=n; i++) rank1[sa[i]]=i; for(i=0; i<n; height[rank1[i++]]=k) for(k?k--:0,j=sa[rank1[i]-1]; r[i+k]==r[j+k]; k++); }
//POJ 1743 #include <iostream> #include <cstdio> #include <algorithm> #include <string> #include <cmath> #include <cstring> #include <queue> #include <set> #include <vector> #include <stack> #include <map> #include <iomanip> #define PI acos(-1.0) #define Max 2505 #define inf 1<<28 #define LL(x) ( x << 1 ) #define RR(x) ( x << 1 | 1 ) #define REP(i,s,t) for( int i = ( s ) ; i <= ( t ) ; ++ i ) #define ll long long #define mem(a,b) memset(a,b,sizeof(a)) #define mp(a,b) make_pair(a,b) #define PII pair<int,int> using namespace std; #define N 20005 /****后缀数组模版****/ #define F(x)((x)/3+((x)%3==1?0:tb)) //F(x)求出原字符串的suffix(x)在新的字符串中的起始位置 #define G(x)((x)<tb?(x)*3+1:((x)-tb)*3+2) //G(x)是计算新字符串的suffix(x)在原字符串中的位置,和F(x)为互逆运算 int wa[N],wb[N],wv[N],WS[N]; int sa[N*3] ; int rank1[N],height[N]; int r[N*3]; int c0(int *r,int a,int b) { return r[a]==r[b] && r[a+1]==r[b+1] && r[a+2]==r[b+2]; } int c12(int k,int *r,int a,int b) { if(k==2) return r[a]<r[b] || ( r[a]==r[b] && c12(1,r,a+1,b+1) ); else return r[a]<r[b] || ( r[a]==r[b] && wv[a+1]<wv[b+1] ); } void sort(int *r,int *a,int *b,int n,int m) { int i; for(i=0; i<n; i++) wv[i]=r[a[i]]; for(i=0; i<m; i++) WS[i]=0; for(i=0; i<n; i++) WS[wv[i]]++; for(i=1; i<m; i++) WS[i]+=WS[i-1]; for(i=n-1; i>=0; i--) b[--WS[wv[i]]]=a[i]; return; } //注意点:为了方便下面的递归处理,r数组和sa数组的大小都要是3*n void dc3(int *r,int *sa,int n,int m) { //rn数组保存的是递归处理的新字符串,san数组是新字符串的sa int i , j , *rn = r+n , *san = sa+n , ta = 0 ,tb = (n+1)/3 , tbc = 0 , p; r[n] = r[n+1] = 0; for(i=0; i<n; i++) { if(i%3!=0) wa[tbc++]=i; //tbc表示起始位置模3为1或2的后缀个数 } sort(r+2,wa,wb,tbc,m); sort(r+1,wb,wa,tbc,m); sort(r,wa,wb,tbc,m); for(p=1,rn[F(wb[0])]=0,i=1; i<tbc; i++) rn[F(wb[i])]=c0(r,wb[i-1],wb[i])?p-1:p++; if(p<tbc) dc3(rn,san,tbc,p); else { for(i=0; i<tbc; i++) san[rn[i]]=i; } //对所有起始位置模3等于0的后缀排序 for(i=0; i<tbc; i++) { if(san[i]<tb) wb[ta++]=san[i]*3; } if(n%3==1) //n%3==1,要特殊处理suffix(n-1) wb[ta++]=n-1; sort(r,wb,wa,ta,m); for(i=0; i<tbc; i++) wv[wb[i]=G(san[i])]=i; //合并所有后缀的排序结果,保存在sa数组中 for(i=0,j=0,p=0; i<ta&&j<tbc; p++) sa[p]=c12(wb[j]%3,r,wa[i],wb[j])?wa[i++]:wb[j++]; for(; i<ta; p++) sa[p]=wa[i++]; for(; j<tbc; p++) sa[p]=wb[j++]; return; } //height[i]=suffix(sa[i-1])和suffix(sa[i])的最长公共前缀,也就是排名相邻的两个后缀的最长公共前缀 void calheight(int *r,int *sa,int n) { int i,j,k=0; for(i=1; i<=n; i++) rank1[sa[i]]=i; for(i=0; i<n; height[rank1[i++]]=k) for(k?k--:0,j=sa[rank1[i]-1]; r[i+k]==r[j+k]; k++); } int solve(int n) { int i,sum=0; for(i=1; i<=n; i++) { sum += n - sa[i] - height[i] ; } return sum; } /****以上模版****/ int a[N] ; bool check(int *sa , int n , int mid) { int mx = sa[1] ; int mn = sa[1] ; for (int i = 2 ; i <= n ; i ++ ) { if(height[i] < mid) { mx = sa[i] ; mn = sa[i] ; } else { mx = max(sa[i] ,mx) ; mn = min(sa[i] ,mn) ; if(mx - mn >= mid)return 1 ; } } return 0 ; } int main() { int n ; while(scanf("%d",&n ) , n ) { for (int i = 0 ; i < n ; i ++ ) { scanf("%d",&a[i]) ; } for (int i = 0 ; i < n - 1 ; i ++ )r[i] = a[i + 1] - a[i] + 100 ; r[n - 1] = 0 ; n -- ; dc3(r ,sa ,n + 1 , 200) ; calheight(r , sa ,n) ; int r = n , l = 1 ; int ans = 0 ; while(r >= l) { int mid = l + r >> 1 ; if(check(sa , n , mid)) { l = mid + 1 ; ans = max(ans ,mid) ; } else r = mid - 1 ; } if(ans < 4)puts("0") ; else printf("%d\n",ans + 1) ; } return 0 ; }
#include <iostream> #include <cstdio> #include <algorithm> #include <string> #include <cmath> #include <cstring> #include <queue> #include <set> #include <vector> #include <stack> #include <map> #include <iomanip> #define PI acos(-1.0) #define Max 2505 #define inf 1<<28 #define LL(x) ( x << 1 ) #define RR(x) ( x << 1 | 1 ) #define REP(i,s,t) for( int i = ( s ) ; i <= ( t ) ; ++ i ) #define ll long long #define mem(a,b) memset(a,b,sizeof(a)) #define mp(a,b) make_pair(a,b) #define PII pair<int,int> using namespace std; #define N 20005 /****后缀数组模版****/ #define F(x)((x)/3+((x)%3==1?0:tb)) //F(x)求出原字符串的suffix(x)在新的字符串中的起始位置 #define G(x)((x)<tb?(x)*3+1:((x)-tb)*3+2) //G(x)是计算新字符串的suffix(x)在原字符串中的位置,和F(x)为互逆运算 int wa[N],wb[N],wv[N],WS[N]; int sa[N*3] ; int rank1[N],height[N]; int r[N*3]; int c0(int *r,int a,int b) { return r[a]==r[b] && r[a+1]==r[b+1] && r[a+2]==r[b+2]; } int c12(int k,int *r,int a,int b) { if(k==2) return r[a]<r[b] || ( r[a]==r[b] && c12(1,r,a+1,b+1) ); else return r[a]<r[b] || ( r[a]==r[b] && wv[a+1]<wv[b+1] ); } void sort(int *r,int *a,int *b,int n,int m) { int i; for(i=0; i<n; i++) wv[i]=r[a[i]]; for(i=0; i<m; i++) WS[i]=0; for(i=0; i<n; i++) WS[wv[i]]++; for(i=1; i<m; i++) WS[i]+=WS[i-1]; for(i=n-1; i>=0; i--) b[--WS[wv[i]]]=a[i]; return; } //注意点:为了方便下面的递归处理,r数组和sa数组的大小都要是3*n void dc3(int *r,int *sa,int n,int m) { //rn数组保存的是递归处理的新字符串,san数组是新字符串的sa int i , j , *rn = r+n , *san = sa+n , ta = 0 ,tb = (n+1)/3 , tbc = 0 , p; r[n] = r[n+1] = 0; for(i=0; i<n; i++) { if(i%3!=0) wa[tbc++]=i; //tbc表示起始位置模3为1或2的后缀个数 } sort(r+2,wa,wb,tbc,m); sort(r+1,wb,wa,tbc,m); sort(r,wa,wb,tbc,m); for(p=1,rn[F(wb[0])]=0,i=1; i<tbc; i++) rn[F(wb[i])]=c0(r,wb[i-1],wb[i])?p-1:p++; if(p<tbc) dc3(rn,san,tbc,p); else { for(i=0; i<tbc; i++) san[rn[i]]=i; } //对所有起始位置模3等于0的后缀排序 for(i=0; i<tbc; i++) { if(san[i]<tb) wb[ta++]=san[i]*3; } if(n%3==1) //n%3==1,要特殊处理suffix(n-1) wb[ta++]=n-1; sort(r,wb,wa,ta,m); for(i=0; i<tbc; i++) wv[wb[i]=G(san[i])]=i; //合并所有后缀的排序结果,保存在sa数组中 for(i=0,j=0,p=0; i<ta&&j<tbc; p++) sa[p]=c12(wb[j]%3,r,wa[i],wb[j])?wa[i++]:wb[j++]; for(; i<ta; p++) sa[p]=wa[i++]; for(; j<tbc; p++) sa[p]=wb[j++]; return; } //height[i]=suffix(sa[i-1])和suffix(sa[i])的最长公共前缀,也就是排名相邻的两个后缀的最长公共前缀 void calheight(int *r,int *sa,int n) { int i,j,k=0; for(i=1; i<=n; i++) rank1[sa[i]]=i; for(i=0; i<n; height[rank1[i++]]=k) for(k?k--:0,j=sa[rank1[i]-1]; r[i+k]==r[j+k]; k++); } int a[N] ; int mx ; bool check(int n, int m ,int mid){ int cnt = 1 ; for (int i = 1 ; i <= n ; i ++ ){ if(height[i] >= mid){ cnt ++ ; if(cnt >= m)return 1 ; }else cnt = 1 ; } return 0 ; } int main() { int n , m ; mx = 0 ; int ans = 0 ; scanf("%d%d",&n , &m) ; for (int i = 0 ; i < n ; i ++ ){ scanf("%d",&a[i]) ; mx = max(mx ,a[i]) ; } for (int i = 0 ; i < n ; i ++ )r[i] = a[i] ; r[n] = 0 ; //cout << mx << endl; dc3(r , sa , n + 1 , mx + 1 ) ; calheight(r, sa ,n) ; // cout << mx << endl; int l = 1 , r = n ; while(r >= l){ int mid = r + l >> 1 ; if(check(n , m , mid )){//找到连续至少m个大于mid公共前缀,更新答案。 ans = max(ans , mid) ; l = mid + 1 ; }else r = mid - 1 ; } cout << ans << endl; return 0 ; }
的时间复杂度为 O(n) 。
SPOJ 694 和SPOJ 705是一样的,就是705的N= 5W,用后缀数组可以轻松搞掉。
处理完height数组之后,直接利用上述公式,求出所有子串。
多校第三场的1002我就是用的这个模版,但是T了。。。。
好吧,不吐槽了。
//spoj 694 #include <iostream> #include <cstdio> #include <algorithm> #include <string> #include <cmath> #include <cstring> #include <queue> #include <set> #include <vector> #include <stack> #include <map> #include <iomanip> #define PI acos(-1.0) #define Max 2505 #define inf 1<<28 #define LL(x) ( x << 1 ) #define RR(x) ( x << 1 | 1 ) #define REP(i,s,t) for( int i = ( s ) ; i <= ( t ) ; ++ i ) #define ll long long #define mem(a,b) memset(a,b,sizeof(a)) #define mp(a,b) make_pair(a,b) #define PII pair<int,int> using namespace std; /****后缀数组模版****/ #define N 1005 #define F(x)((x)/3+((x)%3==1?0:tb)) //F(x)求出原字符串的suffix(x)在新的字符串中的起始位置 #define G(x)((x)<tb?(x)*3+1:((x)-tb)*3+2) //G(x)是计算新字符串的suffix(x)在原字符串中的位置,和F(x)为互逆运算 int wa[N],wb[N],wv[N],WS[N]; int sa[N*3] ; int rank1[N],height[N]; int r[N*3]; int c0(int *r,int a,int b) { return r[a]==r[b] && r[a+1]==r[b+1] && r[a+2]==r[b+2]; } int c12(int k,int *r,int a,int b) { if(k==2) return r[a]<r[b] || ( r[a]==r[b] && c12(1,r,a+1,b+1) ); else return r[a]<r[b] || ( r[a]==r[b] && wv[a+1]<wv[b+1] ); } void sort(int *r,int *a,int *b,int n,int m) { int i; for(i=0; i<n; i++) wv[i]=r[a[i]]; for(i=0; i<m; i++) WS[i]=0; for(i=0; i<n; i++) WS[wv[i]]++; for(i=1; i<m; i++) WS[i]+=WS[i-1]; for(i=n-1; i>=0; i--) b[--WS[wv[i]]]=a[i]; return; } //注意点:为了方便下面的递归处理,r数组和sa数组的大小都要是3*n void dc3(int *r,int *sa,int n,int m) { //rn数组保存的是递归处理的新字符串,san数组是新字符串的sa int i , j , *rn = r+n , *san = sa+n , ta = 0 ,tb = (n+1)/3 , tbc = 0 , p; r[n] = r[n+1] = 0; for(i=0; i<n; i++) { if(i%3!=0) wa[tbc++]=i; //tbc表示起始位置模3为1或2的后缀个数 } sort(r+2,wa,wb,tbc,m); sort(r+1,wb,wa,tbc,m); sort(r,wa,wb,tbc,m); for(p=1,rn[F(wb[0])]=0,i=1; i<tbc; i++) rn[F(wb[i])]=c0(r,wb[i-1],wb[i])?p-1:p++; if(p<tbc) dc3(rn,san,tbc,p); else { for(i=0; i<tbc; i++) san[rn[i]]=i; } //对所有起始位置模3等于0的后缀排序 for(i=0; i<tbc; i++) { if(san[i]<tb) wb[ta++]=san[i]*3; } if(n%3==1) //n%3==1,要特殊处理suffix(n-1) wb[ta++]=n-1; sort(r,wb,wa,ta,m); for(i=0; i<tbc; i++) wv[wb[i]=G(san[i])]=i; //合并所有后缀的排序结果,保存在sa数组中 for(i=0,j=0,p=0; i<ta&&j<tbc; p++) sa[p]=c12(wb[j]%3,r,wa[i],wb[j])?wa[i++]:wb[j++]; for(; i<ta; p++) sa[p]=wa[i++]; for(; j<tbc; p++) sa[p]=wb[j++]; return; } //height[i]=suffix(sa[i-1])和suffix(sa[i])的最长公共前缀,也就是排名相邻的两个后缀的最长公共前缀 void calheight(int *r,int *sa,int n) { int i,j,k=0; for(i=1; i<=n; i++) rank1[sa[i]]=i; for(i=0; i<n; height[rank1[i++]]=k) for(k?k--:0,j=sa[rank1[i]-1]; r[i+k]==r[j+k]; k++); } inline void RD(int &ret) { char c; do { c = getchar(); } while(c < '0' || c > '9') ; ret = c - '0'; while((c=getchar()) >= '0' && c <= '9') ret = ret * 10 + ( c - '0' ); } inline void OT(int a){ if(a >= 10)OT(a / 10) ; putchar(a % 10 + '0') ; } char a[N] ; int main() { int T ; cin >> T ; while( T -- ){ cin >> a ; int l = strlen(a) ; for (int i = 0 ; i < l ; i ++ )r[i] = a[i] ; r[l] = 0 ; dc3(r , sa , l + 1 , 200) ; calheight(r , sa , l ) ; int ans = 0 ; for (int i = 1 ; i <= l ; i ++ ){ ans += l - sa[i] - height[i] ; } cout << ans << endl; } return 0 ; }
//POJ 2774 HDU 1403 #include <iostream> #include <cstdio> #include <algorithm> #include <string> #include <cmath> #include <cstring> #include <queue> #include <set> #include <vector> #include <stack> #include <map> #include <iomanip> #define PI acos(-1.0) #define Max 2505 #define inf 1<<28 #define LL(x) ( x << 1 ) #define RR(x) ( x << 1 | 1 ) #define REP(i,s,t) for( int i = ( s ) ; i <= ( t ) ; ++ i ) #define mem(a,b) memset(a,b,sizeof(a)) #define mp(a,b) make_pair(a,b) #define PII pair<int,int> using namespace std; #define N 200005 /****后缀数组模版****/ #define F(x)((x)/3+((x)%3==1?0:tb)) //F(x)求出原字符串的suffix(x)在新的字符串中的起始位置 #define G(x)((x)<tb?(x)*3+1:((x)-tb)*3+2) //G(x)是计算新字符串的suffix(x)在原字符串中的位置,和F(x)为互逆运算 int wa[N],wb[N],wv[N],WS[N]; int sa[N*3] ; int rank1[N],height[N]; int r[N*3]; int c0(int *r,int a,int b) { return r[a]==r[b] && r[a+1]==r[b+1] && r[a+2]==r[b+2]; } int c12(int k,int *r,int a,int b) { if(k==2) return r[a]<r[b] || ( r[a]==r[b] && c12(1,r,a+1,b+1) ); else return r[a]<r[b] || ( r[a]==r[b] && wv[a+1]<wv[b+1] ); } void sort(int *r,int *a,int *b,int n,int m) { int i; for(i=0; i<n; i++) wv[i]=r[a[i]]; for(i=0; i<m; i++) WS[i]=0; for(i=0; i<n; i++) WS[wv[i]]++; for(i=1; i<m; i++) WS[i]+=WS[i-1]; for(i=n-1; i>=0; i--) b[--WS[wv[i]]]=a[i]; return; } //注意点:为了方便下面的递归处理,r数组和sa数组的大小都要是3*n void dc3(int *r,int *sa,int n,int m) { //rn数组保存的是递归处理的新字符串,san数组是新字符串的sa int i , j , *rn = r+n , *san = sa+n , ta = 0 ,tb = (n+1)/3 , tbc = 0 , p; r[n] = r[n+1] = 0; for(i=0; i<n; i++) { if(i%3!=0) wa[tbc++]=i; //tbc表示起始位置模3为1或2的后缀个数 } sort(r+2,wa,wb,tbc,m); sort(r+1,wb,wa,tbc,m); sort(r,wa,wb,tbc,m); for(p=1,rn[F(wb[0])]=0,i=1; i<tbc; i++) rn[F(wb[i])]=c0(r,wb[i-1],wb[i])?p-1:p++; if(p<tbc) dc3(rn,san,tbc,p); else { for(i=0; i<tbc; i++) san[rn[i]]=i; } //对所有起始位置模3等于0的后缀排序 for(i=0; i<tbc; i++) { if(san[i]<tb) wb[ta++]=san[i]*3; } if(n%3==1) //n%3==1,要特殊处理suffix(n-1) wb[ta++]=n-1; sort(r,wb,wa,ta,m); for(i=0; i<tbc; i++) wv[wb[i]=G(san[i])]=i; //合并所有后缀的排序结果,保存在sa数组中 for(i=0,j=0,p=0; i<ta&&j<tbc; p++) sa[p]=c12(wb[j]%3,r,wa[i],wb[j])?wa[i++]:wb[j++]; for(; i<ta; p++) sa[p]=wa[i++]; for(; j<tbc; p++) sa[p]=wb[j++]; return; } //height[i]=suffix(sa[i-1])和suffix(sa[i])的最长公共前缀,也就是排名相邻的两个后缀的最长公共前缀 void calheight(int *r,int *sa,int n) { int i,j,k=0; for(i=1; i<=n; i++) rank1[sa[i]]=i; for(i=0; i<n; height[rank1[i++]]=k) for(k?k--:0,j=sa[rank1[i]-1]; r[i+k]==r[j+k]; k++); } char a[N] ; int ans = 0 ; int main() { while(scanf("%s",a) != EOF) { ans = 0 ; int l = strlen(a) ; a[l] = '*' ; scanf("%s", a + l + 1) ; int ll = strlen(a) ; for (int i = 0 ; i < ll ; i ++ )r[i] = (int)a[i] ; r[ll] = 0 ; dc3(r ,sa ,ll + 1,128) ; calheight(r , sa , ll) ; for (int i = 1 ; i <= ll ; i ++ ) { if((sa[i] > l && sa[i - 1] < l ) || (sa[i] < l && sa[i - 1] > l) ) { ans = max(ans ,height[i]) ; } } cout << ans << endl; } return 0 ; }
其实两道题差不多,只是这道题不只是找到两个字串的最长公共前缀,而且要输出这个公共的字串。
那么我们可以在二分答案的时候记录他的首地址。而sa[]数组就可以帮助我们轻松的完成这个任务。
我们只需要每次更新答案的时候,更新sa[]数组即可。
最后输出一个长度为ans的最长公共字串即可。
//ural 1517 #include <iostream> #include <cstdio> #include <algorithm> #include <string> #include <cmath> #include <cstring> #include <queue> #include <set> #include <vector> #include <stack> #include <map> #include <iomanip> #define PI acos(-1.0) #define Max 2505 #define inf 1<<28 #define LL(x) ( x << 1 ) #define RR(x) ( x << 1 | 1 ) #define REP(i,s,t) for( int i = ( s ) ; i <= ( t ) ; ++ i ) #define mem(a,b) memset(a,b,sizeof(a)) #define mp(a,b) make_pair(a,b) #define PII pair<int,int> using namespace std; #define N 200005 /****后缀数组模版****/ #define F(x)((x)/3+((x)%3==1?0:tb)) //F(x)求出原字符串的suffix(x)在新的字符串中的起始位置 #define G(x)((x)<tb?(x)*3+1:((x)-tb)*3+2) //G(x)是计算新字符串的suffix(x)在原字符串中的位置,和F(x)为互逆运算 int wa[N],wb[N],wv[N],WS[N]; int sa[N*3] ; int rank1[N],height[N]; int r[N*3]; int c0(int *r,int a,int b) { return r[a]==r[b] && r[a+1]==r[b+1] && r[a+2]==r[b+2]; } int c12(int k,int *r,int a,int b) { if(k==2) return r[a]<r[b] || ( r[a]==r[b] && c12(1,r,a+1,b+1) ); else return r[a]<r[b] || ( r[a]==r[b] && wv[a+1]<wv[b+1] ); } void sort(int *r,int *a,int *b,int n,int m) { int i; for(i=0; i<n; i++) wv[i]=r[a[i]]; for(i=0; i<m; i++) WS[i]=0; for(i=0; i<n; i++) WS[wv[i]]++; for(i=1; i<m; i++) WS[i]+=WS[i-1]; for(i=n-1; i>=0; i--) b[--WS[wv[i]]]=a[i]; return; } //注意点:为了方便下面的递归处理,r数组和sa数组的大小都要是3*n void dc3(int *r,int *sa,int n,int m) { //rn数组保存的是递归处理的新字符串,san数组是新字符串的sa int i , j , *rn = r+n , *san = sa+n , ta = 0 ,tb = (n+1)/3 , tbc = 0 , p; r[n] = r[n+1] = 0; for(i=0; i<n; i++) { if(i%3!=0) wa[tbc++]=i; //tbc表示起始位置模3为1或2的后缀个数 } sort(r+2,wa,wb,tbc,m); sort(r+1,wb,wa,tbc,m); sort(r,wa,wb,tbc,m); for(p=1,rn[F(wb[0])]=0,i=1; i<tbc; i++) rn[F(wb[i])]=c0(r,wb[i-1],wb[i])?p-1:p++; if(p<tbc) dc3(rn,san,tbc,p); else { for(i=0; i<tbc; i++) san[rn[i]]=i; } //对所有起始位置模3等于0的后缀排序 for(i=0; i<tbc; i++) { if(san[i]<tb) wb[ta++]=san[i]*3; } if(n%3==1) //n%3==1,要特殊处理suffix(n-1) wb[ta++]=n-1; sort(r,wb,wa,ta,m); for(i=0; i<tbc; i++) wv[wb[i]=G(san[i])]=i; //合并所有后缀的排序结果,保存在sa数组中 for(i=0,j=0,p=0; i<ta&&j<tbc; p++) sa[p]=c12(wb[j]%3,r,wa[i],wb[j])?wa[i++]:wb[j++]; for(; i<ta; p++) sa[p]=wa[i++]; for(; j<tbc; p++) sa[p]=wb[j++]; return; } //height[i]=suffix(sa[i-1])和suffix(sa[i])的最长公共前缀,也就是排名相邻的两个后缀的最长公共前缀 void calheight(int *r,int *sa,int n) { int i,j,k=0; for(i=1; i<=n; i++) rank1[sa[i]]=i; for(i=0; i<n; height[rank1[i++]]=k) for(k?k--:0,j=sa[rank1[i]-1]; r[i+k]==r[j+k]; k++); } char a[N] ; int ans = 0 ; int main() { int x ; cin >> x ; scanf("%s",a) ; ans = 0 ; int l = strlen(a) ; a[l] = '*' ; scanf("%s", a + l + 1) ; int ll = strlen(a) ; for (int i = 0 ; i < ll ; i ++ )r[i] = (int)a[i] ; r[ll] = 0 ; dc3(r ,sa ,ll + 1,128) ; calheight(r , sa , ll) ; int now = -1 ; for (int i = 1 ; i <= ll ; i ++ ) { if((sa[i] > l && sa[i - 1] < l ) || (sa[i] < l && sa[i - 1] > l) ) {//保证这个sa[i]和sa[i - 1]是位于不同的字符串中的 if(ans < height[i]) { ans = height[i] ; now = sa[i - 1] ; } } } //cout << now << " " << ans << endl; for (int i = now ; i < now + ans ; i ++ )cout << a[i] ; cout << endl; //cout << ans << endl; return 0 ; }