【题目】
Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1]
, return 6
.
题意:求数组组成的凹槽能盛水的容积。
思路:从两端向中间靠拢,求以两端为边的容器能盛水的容积,然后所有值都减去短边的值,找到新的两边,不断迭代下去直到中间。
public class Solution { public int trap(int[] A) { if (A.length < 3) return 0; int ans = 0; int l = 0, r = A.length - 1; while (l < r) { // find the left edge and right edge while (l < r && A[l] == 0) l++; while (l < r && A[r] == 0) r--; //get the shoter edge, which decides the volum int min = Math.min(A[l], A[r]); // compute the volum from A[l] to A[r] int tmp = 0; for (int i = l; i <= r; i++) { if (A[i] >= min) { A[i] -= min; } else { tmp += min - A[i]; A[i] = 0; } } // add to the result ans += tmp; } return ans; } }
【升级版】【O(n)】
首先找到有效的两边,如 [0, 1, 2, 3, 0, 3, 2, 1, 0],递增的左边和递减的右边是不能盛水的。
然后选择较短的边,如果是左边就开始右移,直到找到一个比左边高的边,更新左边;如果是右边较短,就左移,直到找到一个更高的边,更新右边。
public class Solution { public int trap(int[] A) { if (A.length < 3) return 0; int ans = 0; int l = 0, r = A.length - 1; // find the left and right edge which can hold water while (l < r && A[l] <= A[l + 1]) l++; while (l < r && A[r] <= A[r - 1]) r--; while (l < r) { int left = A[l]; int right = A[r]; if (left <= right) { // add volum until an edge larger than the left edge while (l < r && left >= A[++l]) { ans += left - A[l]; } } else { // add volum until an edge larger than the right volum while (l < r && A[--r] <= right) { ans += right - A[r]; } } } return ans; } }