后缀数组的自底向上(bottom-up)遍历算法

后缀数组自底向上遍历等价于后缀树的自底向上遍历。由于后缀数组不是树型结构,在遍历时除了SA本身之外还需要额外的信息,这时Suffix Array就是一个增强的后缀数组(Enhanced Suffix Array)了。该算法使用后缀数组的一个增强信息---LCP表,并通过堆栈模拟自底向上的遍历。遍历的结果就是一颗虚拟的lcp-interval树,其中每一个结点对应后缀树的一个内部结点。有些应用中,遍历时需要知道每个结点的孩子信息,因此在下面的实现中提供了两个版本bottomUpTraverseWithoutChildren和bottomUpTraverseWithChildren。

需要说明的是,树中每一个lcp-interval结点表示为:lcp-[i..j],其中lcp相当于后缀树的pathlen,i和j分别是以该lcp-interval结点为根结点表示的子树中的最小和最大后缀数组下标,例如mississippi$的一个lcp-interval结点是1-[1..4],表示后缀数组中第1个后缀到第4个后缀这总共四个后缀作为该lcp-interval结点为根的子树的四个叶子结点。


实现:

import java.util.ArrayList;
import java.util.List;
import java.util.Stack;

/**
 * 
 * Bottom-Up Traversal of a suffix array (with LCP table)
 * (The suffix array is constructed with prefix doubling algorithm)
 * 
 *  
 * Copyright (c) 2011 ljs (http://blog.csdn.net/ljsspace/)
 * Licensed under GPL (http://www.opensource.org/licenses/gpl-license.php) 
 * 
 * @author ljs
 * 2011-07-23
 *
 */
public class ESA_BottomUpTraversal {

	public static final char MAX_CHAR = '\u00FF';
	
	private String text;
	private int[] suffixarray;
	private int[] ranktable;
	private int[] lcptable;
 
	
	public ESA_BottomUpTraversal(String text){	
		this.text = text;
	}

	class Suffix{
		int[] sa;  
		//Note: the p-th suffix in sa: SA[rank[p]-1]];
		//p is the index of the array "rank", start with 0;
		//a text S's p-th suffix is S[p..n], n=S.length-1.
		int[] rank; 
		boolean done;
		 
		public Suffix(int[] sa,int[] rank){
			this.sa = sa;
			this.rank = rank;
		}
	}
	

	//a prefix of suffix[isuffix] represented with digits
	class Tuple{
		int isuffix; //the p-th suffix
		int[] digits;
		public Tuple(int suffix,int[] digits){
			this.isuffix = suffix;
			this.digits = digits;			
		}
		public String toString(){
			StringBuffer sb = new StringBuffer();			
			sb.append(isuffix);
			sb.append("(");
			for(int i=0;i<digits.length;i++){
				sb.append(digits[i]);
				if(i<digits.length-1)
					sb.append("-");
			}
			sb.append(")");
			return sb.toString();
		}
	}
	
	//d: the digit to do countingsort
	//max: A value's range is 0...max
	private void countingSort(int d,Tuple[] tA,Tuple[] tB,int max){
		//init the counter array
		int[] C = new int[max+1];
		for(int i=0;i<=max;i++){
			C[i] = 0;
		}
		//stat the count
		for(int j=0;j<tA.length;j++){
			C[tA[j].digits[d]]++;
		}
		//process the counter array C
		for(int i=1;i<=max;i++){
			C[i]+=C[i-1];
		}
		//distribute the values  
		for(int j=tA.length-1;j>=0;j--){
			//C[A[j]] <= A.length 
			tB[--C[tA[j].digits[d]]]=tA[j];			
		}
	}
	
	//tA: input
	//tB: output for rank caculation
	private void radixSort(Tuple[] tA,Tuple[] tB,int max,int digitsLen){
		int len = tA.length;
		int digitsTotalLen = tA[0].digits.length;
			
		for(int d=digitsTotalLen-1,j=0;j<digitsLen;d--,j++){
			this.countingSort(d, tA, tB, max);
			//assign tB to tA
			if(j<digitsLen-1){
				for(int i=0;i<len;i++){
					tA[i] = tB[i];
				}		
			}
		}
	}
	
	//max is the maximum value in any digit of TA.digits[], used for counting sort
	//tA: input
	//tB: the place holder, reused between iterations
	private Suffix rank(Tuple[] tA,Tuple[] tB,int max,int digitsLen){		
		int len = tA.length;		
		radixSort(tA,tB,max,digitsLen);	
		
		int digitsTotalLen = tA[0].digits.length;
		
		//caculate rank and sa	
		int[] sa = new int[len];
		sa[0] = tB[0].isuffix;	
		
		int[] rank = new int[len+2]; //add 2 for sentinel	
		rank[len]=1;rank[len+1] = 1;
		int r = 1; //rank starts with 1
		rank[tB[0].isuffix] = r;		
		for(int i=1;i<len;i++){
			sa[i] = tB[i].isuffix;	
			
			boolean equalLast = true;
			for(int j=digitsTotalLen-digitsLen;j<digitsTotalLen;j++){
				if(tB[i].digits[j]!=tB[i-1].digits[j]){
					equalLast = false;
					break;
				}
			}
			if(!equalLast){
				r++;
			}
			rank[tB[i].isuffix] = r;	
		}
				 
		Suffix suffix = new Suffix(sa,rank);
		//judge if we are done
		if(r==len){
			suffix.done = true;
		}else{
			suffix.done = false;
		}
		return suffix;
		
	}
	
	private int[] orderSuffixes(Tuple[] tA,Tuple[] tB,int max,int digitsLen){		
		int len = tA.length;		
		radixSort(tA,tB,max,digitsLen);			
		//caculate rank and sa	
		int[] sa = new int[len];
		for(int i=0;i<len;i++){
			sa[i] = tB[i].isuffix;				
		}
		return sa;		 
	}
	
	//rank needs sentinel: len+2
	private Suffix reduce(int[] rank,int max){
		int len = rank.length - 2;
		
		int n1 = (len+1)/3;
		int n2 = len/3;
		Tuple[] tA = new Tuple[n1+n2];
		Tuple[] tB = new Tuple[n1+n2];
		
		for(int i=0,j=1;i<n1;i++,j+=3){
			int r1 =  rank[j];
			int r2 =  rank[j+1];
			int r3 =  rank[j+2];
			tA[i] = new Tuple(i,new int[]{r1,r2,r3});
		}
		for(int i=n1,j=2;i<n1+n2;i++,j+=3){
			int r1 =  rank[j];
			int r2 =  rank[j+1];
			int r3 =  rank[j+2];	 
			tA[i] = new Tuple(i,new int[]{r1,r2,r3});
		}
		 
		return rank(tA,tB,max,3);		
	}
	
	
	private int[] skew(int[] rank,int max){
		int len = rank.length - 2;
		
		//step 1: caculate sa12
		Suffix suffixT12 = reduce(rank,max);
		 
		
		int[] sa12 = null;
		if(!suffixT12.done){
			int[] rankT12 = suffixT12.rank;
			int maxT12 = rankT12[suffixT12.sa[suffixT12.sa.length-1]];
			sa12 = skew(rankT12,maxT12);
			// debug for string: GACCCACCACC#
			//s12 = new Suffix();
			//s12.rank = new int[]{3,6,5,4,7,2,1,1,1};
			//s12.sa = new int[]{7,6,5,0,3,2,1,4};
			//s12.done =true;						
		}else{
			sa12 = suffixT12.sa;			
		}
		
		//index conversion for sa12
		int n1 = (len+1)/3;
		for(int j=0;j<sa12.length;j++){
			if(sa12[j]<n1){
				sa12[j] = 1 + 3*sa12[j];
			}else{
				sa12[j] = 2 + 3*(sa12[j]-n1);
			}				
		}
		//recaculate rank for sa12
		int[] rank12 = new int[len+2];
		rank12[len] = 1;rank12[len+1] = 1;
		for(int k=0;k<sa12.length;k++){
			rank12[sa12[k]] = k+1;
		}
		 
		  
		
		//step 2: caculate sa0		
		int n0=(len+2)/3;
		Tuple[] tA = new Tuple[n0];
		Tuple[] tB = new Tuple[n0];
		for(int i=0,j=0;i<n0;i++,j+=3){
			int r1 =  rank[j];
			int r2 =  rank12[j+1]; 
			tA[i] = new Tuple(i,new int[]{r1,r2});
		}
		int max12 = rank12[sa12[sa12.length-1]];		
		int[] sa0 = orderSuffixes(tA,tB,max<max12?max12:max,2);
		//index conversion for sa0
		for(int j=0;j<n0;j++){
			sa0[j] = 3*sa0[j];					
		}		 
		
		//step 3: merge sa12 and sa0
		int[] sa = new int[len];
		int i=0,j=0;
		int k=0;
		while(i<sa12.length && j<sa0.length){
			int p = sa12[i];
			int q = sa0[j];
			if(p%3==1){
				//case 1
				if(rank[p]<rank[q]){
					sa[k++] = p;i++;
				}else if(rank[p]>rank[q]){
					sa[k++] = q;j++;
				}else{
					if(rank12[p+1]<rank12[q+1]){
						sa[k++] = p;i++;
					}else{
						sa[k++] = q;j++;
					}					
				}
			}else{
				//case 2
				if(rank[p]<rank[q]){
					sa[k++] = p;i++;
				}else if(rank[p]>rank[q]){
					sa[k++] = q;j++;
				}else{
					if(rank[p+1]<rank[q+1]){
						sa[k++] = p;i++;
					}else if(rank[p+1]>rank[q+1]){
						sa[k++] = q;j++;
					}else{
						if(rank12[p+2]<rank12[q+2]){
							sa[k++] = p;i++;
						}else{
							sa[k++] = q;j++;
						}			
					}
				}
			}			
		}
		for(int m=i;m<sa12.length;m++){
			sa[k++] = sa12[m];
		}
		for(int m=j;m<sa0.length;m++){
			sa[k++] = sa0[m];
		}		
		
		return sa;		
	}
	//Precondition: the last char in text must be less than other chars.
	public void computeSuffixArray(){
		if(text == null)return;
		int len = text.length();
		if(len == 0) return ; 
		
		char base = text.charAt(len-1); //the smallest char
		Tuple[] tA = new Tuple[len];
		Tuple[] tB = new Tuple[len]; //placeholder
		for(int i=0;i<len;i++){
			tA[i] = new Tuple(i,new int[]{0,text.charAt(i)-base});
		}
		Suffix suffix = rank(tA,tB,MAX_CHAR-base,1);
		 
		int max = suffix.rank[suffix.sa[len-1]];
		int[] sa  = skew(suffix.rank,max);
		
		//caculate rank for result suffix array
		int[] r = new int[len];		
		for(int k=0;k<sa.length;k++){
			r[sa[k]] = k+1;
		} 
		
		this.suffixarray = sa;
		this.ranktable = r;
	}
	
	
	//rank[p]'s index starts with 1 (not 0)
	public void computeLCPtable(){ 
		if(text == null)return;
		int len = text.length();
		if(len == 0) return ;
		
		int[] sa = this.suffixarray;		
		int[] rank = this.ranktable;
		  
		 
		int[] lcpz = new int[len];
		
		//base case: p=0
		//caculate LCP of suffix[0]
		int lcp = 0;
		int r = rank[0]-1;
		if(r>0){
		   int q=sa[r-1];
		   //caculate LCP by definition
		   for(int i=0,j=q;i<len && j<len;i++,j++){
			   if(text.charAt(i) != text.charAt(j)){
				   lcp=i;
				   break;
			   }
		   }
		}
		lcpz[0] = lcp;
		
		//other cases: p>=1
		//ignore p == sa[0] because LCP=0 for suffix[p] where rank[p]=0				
		for(int p=1;p<len && p != sa[0];p++){
			int h = lcpz[p-1];
			int q=sa[rank[p]-2];
			lcp = 0;
			if(h>1){ //for h<=1, caculate LCP by definition (i.e. start with lcp=0)			
				//jump h-1 chars for suffix[p] and suffix[q]						
				lcp = h-1;			    
			}
			for(int i=p+lcp,j=q+lcp,k=0;i<len && j<len;i++,j++,k++){
			   if(text.charAt(i) != text.charAt(j)){
				   lcp+=k;
				   break;
			   }
			}
			lcpz[p] = lcp;
		}
		
		//caculate LCP
		int[] LCP = new int[len];
		for(int i=0;i<len;i++){
			LCP[i] = lcpz[sa[i]];
		}
		this.lcptable = LCP;
	}
	

	private void reportLCP(){
		System.out.format("Text: %s%n",text);
	 
		int len = this.text.length();
		
		System.out.println("suffix array:");
		for(int i=0;i<len;i++){
			System.out.format(" %s", this.suffixarray[i]);			
		}
		System.out.println();
		System.out.println("rank table:");
		for(int i=0;i<len;i++){
			System.out.format(" %s", this.ranktable[i]);			
		}		
		System.out.println();
		System.out.println("lcp table:");
		for(int i=0;i<len;i++){
			System.out.format(" %s", this.lcptable[i]);			
		}		
	}
	
	class LCPInterval{
		int lcp; //the lcp value of the lcp-interval
		int lb; //the left boundary suffix index
		int rb; //the right boundary suffix index
		List<LCPInterval> children = new ArrayList<LCPInterval>();
		public LCPInterval(int lcp,int lb,int rb){
			this.lcp = lcp;
			this.lb = lb;
			this.rb = rb;
		}
		public String toString(){
			return String.format("%d-[%d..%d]", 
					this.lcp,this.lb,this.rb);
		}
	}	
	
	private void reportLCPInterval(LCPInterval interval){
		if(interval.children.size()>0){
			StringBuilder sb = new StringBuilder();
			for(LCPInterval child:interval.children){
				sb.append(child.toString());
				sb.append(",");
			}
			sb.deleteCharAt(sb.length()-1);
			System.out.format("%s, children={%s}%n", 
					interval,sb.toString());				
		}else{
			System.out.format("%s%n", interval);	
		}
	}
	
	//traverse the corresponding suffix tree with a bottom-up approach
	//each internal node is equivalent to an lcp-interval.
	public void bottomUpTraverseWithoutChildren(){
		int len = text.length();
		
		Stack<LCPInterval> stack = new Stack<LCPInterval>();
		int lb = -1;
		//push root's first child
		stack.push(new LCPInterval(0,0,-1));
		for(int i=1;i<len;i++){ 
			//save lb
			lb = i - 1;
			//pop all the deeper suffixes
			while(lcptable[i]<stack.peek().lcp){
				LCPInterval interval = stack.pop();
				//update the popped interval's rb
				interval.rb = i-1;
				reportLCPInterval(interval);
				
				//update lb
				lb = interval.lb;								
			}
			if(lcptable[i]>stack.peek().lcp){
				stack.push(new LCPInterval(lcptable[i],lb,-1));
			} //if lcptable[i]==interval.lcp, no push because rb is updated when popped
		}
		
		while(!stack.isEmpty()){
			LCPInterval interval = stack.pop();
			//update the popped interval's rb
			interval.rb = len-1;
			
			reportLCPInterval(interval);				
		}		
	}
	
	public void bottomUpTraverseWithChildren(){
		int len = text.length();
		
		Stack<LCPInterval> stack = new Stack<LCPInterval>();
		int lb = -1;
		LCPInterval lastInterval = null;
		//push root's first child
		stack.push(new LCPInterval(0,0,-1));
		for(int i=1;i<len;i++){ 
			//save lb
			lb = i - 1;
			//pop all the deeper suffixes
			while(lcptable[i]<stack.peek().lcp){
				lastInterval = stack.pop();
				//update the popped interval's rb
				lastInterval.rb = i-1;			
				//Note: when lastInterval is popped out, if it has children then its
				//children are already known!
				reportLCPInterval(lastInterval);	
				
				//update lb
				lb = lastInterval.lb;
								
				if(lcptable[i]<=stack.peek().lcp){
					//case 1: top>next>i, then top is next's child
					LCPInterval next = stack.peek();	
					next.children.add(lastInterval);
					lastInterval = null;
				}
			}
			if(lcptable[i]>stack.peek().lcp){
				LCPInterval curr=new LCPInterval(lcptable[i],lb,-1);
				if(lastInterval != null){ 
					//case 2: top>i>next, then top is i's child
					curr.children.add(lastInterval);
					lastInterval = null;
				}
				stack.push(curr);
			} //if lcptable[i]==interval.lcp, no push because rb is updated when popped
		}
		
		while(!stack.isEmpty()){
			lastInterval = stack.pop();
			//update the popped interval's rb
			lastInterval.rb = len-1;
			
			reportLCPInterval(lastInterval);	
			
			if(!stack.isEmpty()){//case 1: top > next, i.e. top is next's child
				LCPInterval next = stack.peek();	
				next.children.add(lastInterval);
			}
		}		
	}
	public void solve(){
		this.computeSuffixArray();
		this.computeLCPtable();
		this.reportLCP();
		
		System.out.format("%nbottom-up traversal with no children list: %n");
		this.bottomUpTraverseWithoutChildren();		
		System.out.format("%nbottom-up traversal with children list: %n");
		this.bottomUpTraverseWithChildren();	
	}
	
	public static void main(String[] args) {
		String text = "mississippi#";
		ESA_BottomUpTraversal esa = new ESA_BottomUpTraversal(text);
		esa.solve();
		System.out.format("%n********************************%n");
		
		text = "GACCCACCACC#";
		esa = new ESA_BottomUpTraversal(text);
		esa.solve();
		System.out.format("%n********************************%n");	
	}
}



测试:

Text: mississippi#
suffix array:
 11 10 7 4 1 0 9 8 6 3 5 2
rank table:
 6 5 12 10 4 11 9 3 8 7 2 1
lcp table:
 0 0 1 1 4 0 0 1 0 2 1 3
bottom-up traversal with no children list:
4-[3..4]
1-[1..4]
1-[6..7]
2-[8..9]
3-[10..11]
1-[8..11]
0-[0..11]

bottom-up traversal with children list:
4-[3..4]
1-[1..4], children={4-[3..4]}
1-[6..7]
2-[8..9]
3-[10..11]
1-[8..11], children={2-[8..9],3-[10..11]}
0-[0..11], children={1-[1..4],1-[6..7],1-[8..11]}

********************************
Text: GACCCACCACC#
suffix array:
 11 8 5 1 10 7 4 9 6 3 2 0
rank table:
 12 4 11 10 7 3 9 6 2 8 5 1
lcp table:
 0 0 3 3 0 1 4 1 2 5 2 0
bottom-up traversal with no children list:
3-[1..3]
4-[5..6]
5-[8..9]
2-[7..10]
1-[4..10]
0-[0..11]

bottom-up traversal with children list:
3-[1..3]
4-[5..6]
5-[8..9]
2-[7..10], children={5-[8..9]}
1-[4..10], children={4-[5..6],2-[7..10]}
0-[0..11], children={3-[1..3],1-[4..10]}

********************************

参考:

Mohamed Ibrahim Abouelhoda, Stefan Kurtz, Enno Ohlebusch: Replacing suffix tree with enhanced suffix arrays  (2004)


你可能感兴趣的:(list,String,null,table,Arrays,traversal)