接下来以一个实际的例子来看I2C设备驱动,就以drivers/i2c/i2c-dev.c为例。
先看它的初始化和注销函数
static int __init i2c_dev_init(void) { int res; printk(KERN_INFO "i2c /dev entries driver\n"); res = register_chrdev(I2C_MAJOR, "i2c", &i2cdev_fops); if (res) goto out; i2c_dev_class = class_create(THIS_MODULE, "i2c-dev"); if (IS_ERR(i2c_dev_class)) { res = PTR_ERR(i2c_dev_class); goto out_unreg_chrdev; } res = i2c_add_driver(&i2cdev_driver); if (res) goto out_unreg_class; return 0; out_unreg_class: class_destroy(i2c_dev_class); out_unreg_chrdev: unregister_chrdev(I2C_MAJOR, "i2c"); out: printk(KERN_ERR "%s: Driver Initialisation failed\n", __FILE__); return res; } static void __exit i2c_dev_exit(void) { i2c_del_driver(&i2cdev_driver); class_destroy(i2c_dev_class); unregister_chrdev(I2C_MAJOR,"i2c"); }
首先调用register_chrdev注册了一个字符设备,这是老的字符驱动注册方式。然后到了接下来的主角,i2c_add_driver,在I2C子系统中,I2C设备驱动就是采用这个函数注册,注销一个I2C设备驱动使用下面的i2c_del_driver函数,那就具体看看这个I2C设备驱动注册函数。
static inline int i2c_add_driver(struct i2c_driver *driver) { return i2c_register_driver(THIS_MODULE, driver); } int i2c_register_driver(struct module *owner, struct i2c_driver *driver) { int res; /* Can't register until after driver model init */ if (unlikely(WARN_ON(!i2c_bus_type.p))) return -EAGAIN; /* add the driver to the list of i2c drivers in the driver core */ driver->driver.owner = owner; driver->driver.bus = &i2c_bus_type; /*指定驱动的总线类型*/ /* When registration returns, the driver core * will have called probe() for all matching-but-unbound devices. */ res = driver_register(&driver->driver); /*注册驱动*/ if (res) return res; pr_debug("i2c-core: driver [%s] registered\n", driver->driver.name); INIT_LIST_HEAD(&driver->clients); /* Walk the adapters that are already present */ mutex_lock(&core_lock); bus_for_each_dev(&i2c_bus_type, NULL, driver, __attach_adapter); mutex_unlock(&core_lock); return 0; }
再来看看i2c设备驱动注销函数
void i2c_del_driver(struct i2c_driver *driver) { mutex_lock(&core_lock); bus_for_each_dev(&i2c_bus_type, NULL, driver, __detach_adapter); mutex_unlock(&core_lock); driver_unregister(&driver->driver); pr_debug("i2c-core: driver [%s] unregistered\n", driver->driver.name); }
也没什么,最后调用的就是驱动的注销函数driver_unregister函数。
来看传递给注册和注销i2c驱动函数的参数什么,i2cdev_driver它是structi2c_driver结构类型,i2c设备驱动就是使用这个结构类型描述,这个结构类型定义在include/linux/i2c.h
struct i2c_driver { unsigned int class; /* Notifies the driver that a new bus has appeared or is about to be * removed. You should avoid using this if you can, it will probably * be removed in a near future. */ int (*attach_adapter)(struct i2c_adapter *); int (*detach_adapter)(struct i2c_adapter *); /* Standard driver model interfaces */ int (*probe)(struct i2c_client *, const struct i2c_device_id *); int (*remove)(struct i2c_client *); /* driver model interfaces that don't relate to enumeration */ void (*shutdown)(struct i2c_client *); int (*suspend)(struct i2c_client *, pm_message_t mesg); int (*resume)(struct i2c_client *); /* a ioctl like command that can be used to perform specific functions * with the device. */ int (*command)(struct i2c_client *client, unsigned int cmd, void *arg); struct device_driver driver; const struct i2c_device_id *id_table; /* Device detection callback for automatic device creation */ int (*detect)(struct i2c_client *, int kind, struct i2c_board_info *); const struct i2c_client_address_data *address_data; struct list_head clients; };
来看i2c-dev.c中是怎么定义的
static struct i2c_driver i2cdev_driver = { .driver = { .name = "dev_driver", }, .attach_adapter = i2cdev_attach_adapter, .detach_adapter = i2cdev_detach_adapter, };
这是老的方式,所以它只是给attach_adapter和detach_adapter赋了值,由于这里是老的方式,所以我们也就不去具体看这个函数了,我们直接去看它的数据传输部分吧。
static ssize_t i2cdev_read (struct file *file, char __user *buf, size_t count, loff_t *offset) { char *tmp; int ret; struct i2c_client *client = (struct i2c_client *)file->private_data; if (count > 8192) count = 8192; tmp = kmalloc(count,GFP_KERNEL); if (tmp==NULL) return -ENOMEM; pr_debug("i2c-dev: i2c-%d reading %zu bytes.\n", iminor(file->f_path.dentry->d_inode), count); ret = i2c_master_recv(client,tmp,count); if (ret >= 0) ret = copy_to_user(buf,tmp,count)?-EFAULT:ret; kfree(tmp); return ret; }
这是i2c设备读函数,我们看它是调用的i2c_master_recv函数去操作的,去看这个函数
int i2c_master_recv(struct i2c_client *client, char *buf ,int count) { struct i2c_adapter *adap=client->adapter; struct i2c_msg msg; int ret; msg.addr = client->addr; msg.flags = client->flags & I2C_M_TEN; msg.flags |= I2C_M_RD; msg.len = count; msg.buf = buf; ret = i2c_transfer(adap, &msg, 1); /* If everything went ok (i.e. 1 msg transmitted), return #bytes transmitted, else error code. */ return (ret == 1) ? count : ret; }
i2c设备写函数
static ssize_t i2cdev_write (struct file *file, const char __user *buf, size_t count, loff_t *offset) { int ret; char *tmp; struct i2c_client *client = (struct i2c_client *)file->private_data; if (count > 8192) count = 8192; tmp = kmalloc(count,GFP_KERNEL); if (tmp==NULL) return -ENOMEM; if (copy_from_user(tmp,buf,count)) { kfree(tmp); return -EFAULT; } pr_debug("i2c-dev: i2c-%d writing %zu bytes.\n", iminor(file->f_path.dentry->d_inode), count); ret = i2c_master_send(client,tmp,count); kfree(tmp); return ret; } int i2c_master_send(struct i2c_client *client,const char *buf ,int count) { int ret; struct i2c_adapter *adap=client->adapter; struct i2c_msg msg; msg.addr = client->addr; msg.flags = client->flags & I2C_M_TEN; msg.len = count; msg.buf = (char *)buf; ret = i2c_transfer(adap, &msg, 1); /* If everything went ok (i.e. 1 msg transmitted), return #bytes transmitted, else error code. */ return (ret == 1) ? count : ret; }
这两个函数最终都是调用的i2c_transfer函数去完成数据的传输,只是他们的msg的flags不一样,读操作的flags要加上I2C_M_RD这个标志。
再看它们两个共同的i2c_transfer函数
int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { unsigned long orig_jiffies; int ret, try; /* REVISIT the fault reporting model here is weak: * * - When we get an error after receiving N bytes from a slave, * there is no way to report "N". * * - When we get a NAK after transmitting N bytes to a slave, * there is no way to report "N" ... or to let the master * continue executing the rest of this combined message, if * that's the appropriate response. * * - When for example "num" is two and we successfully complete * the first message but get an error part way through the * second, it's unclear whether that should be reported as * one (discarding status on the second message) or errno * (discarding status on the first one). */ if (adap->algo->master_xfer) { #ifdef DEBUG for (ret = 0; ret < num; ret++) { dev_dbg(&adap->dev, "master_xfer[%d] %c, addr=0x%02x, " "len=%d%s\n", ret, (msgs[ret].flags & I2C_M_RD) ? 'R' : 'W', msgs[ret].addr, msgs[ret].len, (msgs[ret].flags & I2C_M_RECV_LEN) ? "+" : ""); } #endif if (in_atomic() || irqs_disabled()) { ret = mutex_trylock(&adap->bus_lock); if (!ret) /* I2C activity is ongoing. */ return -EAGAIN; } else { mutex_lock_nested(&adap->bus_lock, adap->level); } /* Retry automatically on arbitration loss */ orig_jiffies = jiffies; for (ret = 0, try = 0; try <= adap->retries; try++) { ret = adap->algo->master_xfer(adap, msgs, num); if (ret != -EAGAIN) break; if (time_after(jiffies, orig_jiffies + adap->timeout)) break; } mutex_unlock(&adap->bus_lock); return ret; } else { dev_dbg(&adap->dev, "I2C level transfers not supported\n"); return -EOPNOTSUPP; } }
我们看就是调用总线的master_xfer方法,我们在前面分析使用gpio模拟i2c总线时,看过这样一句 .master_xfer =bit_xfer, ,所以最终调用的是这个函数来完成数据传输。使用i2c_master_recv和i2c_master_send函数一次只能传输一个msg,由于它一次只能传输一个msg,所以它的传输方向不能改变,也就是一次只能完成读或写操作,并且读操作时还不能传递设备的基地址,所以通常是不会用这两个函数的,直接的做法时,构造两个msg,一个msg的数据为操作设备基地址,另外一个msg才是我们真正要读写的数据,最后调用i2c_transfer函数去完成数据的传送。