#define PACKETRECV_SIZE 2048
class PacketReader: public BinaryReader {
public:
PacketReader(const Poco::UInt8* buffer,Poco::UInt32 size);
PacketReader(PacketReader&);
virtual ~PacketReader();
const Poco::UInt32 fragments;
Poco::UInt32 available(); // 可读字节数
Poco::UInt8* current();
Poco::UInt32 position(); // 获取当前的相对位置(相对于起始位置的)
void reset(Poco::UInt32 newPos = 0); // 设定当前位置
void shrink(Poco::UInt32 rest);
void next(Poco::UInt32 size);
private:
MemoryInputStream _memory;
};
available
inline Poco::UInt32 PacketReader::available() {
return _memory.available();
}
current:当前绝对位置(内存地址)
inline Poco::UInt8* PacketReader::current() {
return (Poco::UInt8*)_memory.current();
}
position:当前位置(绝对位置)减去缓冲区起始位置
inline Poco::UInt32 PacketReader::position() {
return _memory.current() - _memory.begin();
}
reset
inline void PacketReader::reset(Poco::UInt32 newPos) {
_memory.reset(newPos);
}
next
inline void PacketReader::next(Poco::UInt32 size) {
return _memory.next(size);
}
封装了 MemoryInputStream 的 resize。不过由于前面的 if 语句影响,传给 resize 的参数一定不会大于缓冲区的当前大小。
void PacketReader::shrink(UInt32 rest) {
if (rest > available()) {
WARN("rest %u more upper than available %u bytes",rest,available());
rest = available();
}
_memory.resize(position() + rest);
}
构造函数先调用父类 BinaryReader 的构造函数,并初始化 fragments 和 _memory 输入流的缓冲区。
PacketReader::PacketReader(const UInt8* buffer,UInt32 size)
: _memory((const char*)buffer, size),
BinaryReader(_memory),
fragments(1) {
}
// Consctruction by copy
PacketReader::PacketReader(PacketReader& other)
: _memory(other._memory),
BinaryReader(_memory),
fragments(other.fragments) {
}
PacketReader::~PacketReader() {
}
class PacketWriter: public BinaryWriter {
public:
PacketWriter(const Poco::UInt8* buffer,Poco::UInt32 size);
PacketWriter(PacketWriter&);
virtual ~PacketWriter();
Poco::UInt8* begin();
Poco::UInt32 length();
Poco::UInt32 position();
Poco::UInt32 available();
bool good();
void clear(Poco::UInt32 pos=0);
void reset(Poco::UInt32 newPos);
void limit(Poco::UInt32 length=0);
void next(Poco::UInt32 size);
void flush();
private:
MemoryOutputStream _memory;
PacketWriter* _pOther;
Poco::UInt32 _size;
};
available
inline Poco::UInt32 PacketWriter::available() {
return _memory.available();
}
good:不过 MemoryOutputStream 也是封装的 std::ostream 的 good 函数,True if no error flags are set.
inline bool PacketWriter::good() {
return _memory.good();
}
written
inline Poco::UInt32 PacketWriter::length() {
return _memory.written();
}
position
inline Poco::UInt32 PacketWriter::position() {
return _memory.current()-(char*)begin();
}
reset:设置缓冲区的指针位置,即 position
inline void PacketWriter::reset(Poco::UInt32 newPos) {
_memory.reset(newPos);
}
next:移动缓冲区指针
inline void PacketWriter::next(Poco::UInt32 size) {
return _memory.next(size);
}
begin:返回缓冲区的起始地址
inline Poco::UInt8* PacketWriter::begin() {
return (Poco::UInt8*)_memory.begin();
}
clear:其实就是修改 written 和 position,使得指定位置后面的数据在以后写的时候可以被覆盖,并不是真正的清除。
void PacketWriter::clear(UInt32 pos) {
reset(pos);
_memory.written(pos);
}
limit:封装 MemoryOutputStream 的 resize
void PacketWriter::limit(UInt32 length) {
if (length == 0)
length = _size;
if (length > _size) {
WARN("Limit '%d' more upper than buffer size '%d' bytes",length,_size);
length = _size;
}
_memory.resize(length);
}
flush:封装 BinaryWriter 的 flush,不过 BinaryWriter 的 flush 实际上是从 Poco::BinaryWriter 继承而来的。其作用是“Flushes the underlying stream”。
void PacketWriter::flush() {
if (_pOther && _memory.written() > _pOther->_memory.written())
_pOther->_memory.written(_memory.written());
BinaryWriter::flush();
}
PacketWriter::PacketWriter(const UInt8* buffer, UInt32 size)
: _memory((char*)buffer, size),
BinaryWriter(_memory),
_pOther(NULL),
_size(size) {
}
// Consctruction by copy
PacketWriter::PacketWriter(PacketWriter& other)
: _pOther(&other),
_memory(other._memory),
BinaryWriter(_memory),
_size(other._size) {
}
注意析构函数中会进行 flush:
PacketWriter::~PacketWriter() {
flush();
}
-
转载请注明来自柳大的CSDN博客:Blog.CSDN.net/Poechant
-