2015.10.23更新:修改了一些地方,身边很多人按这个流程安装,完全可以安装
折腾了两个星期的caffe,windows和ubuntu下都安装成功了。其中windows的安装配置参考官网推荐的那个blog,后来发现那个版本的caffe太老,和现在的不兼容,一些关键字都不一样,果断回到Linux下。这里记录一下我的安装配置流程。
电脑配置:
ubuntu 14.04 64bit
8G 内存
GTX650显卡
软件版本:
CUDA 7.0
caffe 当天从github下载的版本
安装ubuntu的过程省略,建议安装后关闭自动更新,上一次安装caffe后用的很好,结果有一天晚上没关电脑,自己半夜更新了显卡驱动,然后...
caffe的安装流程主要参考这个blog,稍有改动:Caffe + Ubuntu 14.04 64bit + CUDA 6.5 配置说明
Caffe 安装配置步骤:
1, 安装开发所需的依赖包
sudo apt-get install build-essential # basic requirement sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev libhdf5-serial-dev libgflags-dev libgoogle-glog-dev liblmdb-dev protobuf-compiler #required by caffe
2,安装CUDA 7.0
验证过程省略,按照官方文档自己操作吧(遇到问题首先要看官方文档啊,血泪教训)
安装CUDA有两种方法,
离线.run安装:从官网下载对应版本的.run安装包安装,安装过程挺复杂,尝试过几次没成功,遂放弃。
在离线.deb安装:deb安装分离线和在线,我都尝试过都安装成功了,官网下载地址
安装之前请先进行md5校验,确保下载的安装包完整
sudo dpkg -i cuda-repo-<distro>_<version>_<architecture>.deb sudo apt-get update sudo apt-get install cuda
tar -zxvf cudnn-6.5-linux-x64-v2.tgz cd cudnn-6.5-linux-x64-v2 sudo cp lib* /usr/local/cuda/lib64/ sudo cp cudnn.h /usr/local/cuda/include/
cd /usr/local/cuda/lib64/ sudo rm -rf libcudnn.so libcudnn.so.6.5 sudo ln -s libcudnn.so.6.5.48 libcudnn.so.6.5 sudo ln -s libcudnn.so.6.5 libcudnn.so
PATH=/usr/local/cuda/bin:$PATH export PATH
source /etc/profile
/usr/local/cuda/lib64
sudo ldconfig
sudo make all -j4
./deviceQuery
./deviceQuery Starting... CUDA Device Query (Runtime API) version (CUDART static linking) Detected 1 CUDA Capable device(s) Device 0: "GeForce GTX 670" CUDA Driver Version / Runtime Version 6.5 / 6.5 CUDA Capability Major/Minor version number: 3.0 Total amount of global memory: 4095 MBytes (4294246400 bytes) ( 7) Multiprocessors, (192) CUDA Cores/MP: 1344 CUDA Cores GPU Clock rate: 1098 MHz (1.10 GHz) Memory Clock rate: 3105 Mhz Memory Bus Width: 256-bit L2 Cache Size: 524288 bytes Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096) Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 1 copy engine(s) Run time limit on kernels: Yes Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Disabled Device supports Unified Addressing (UVA): Yes Device PCI Bus ID / PCI location ID: 1 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 6.5, CUDA Runtime Version = 6.5, NumDevs = 1, Device0 = GeForce GTX 670 Result = PASS
sudo apt-get install libatlas-base-dev
sh sudo ./opencv2_4_10.sh
bash Anaconda-2.3.0-Linux-x86_64.s<em>h</em>
/home/username/anaconda/lib
export LD_LIBRARY_PATH="/home/username/anaconda/lib:$LD_LIBRARY_PATH"
for req in $(cat requirements.txt); do pip install $req; done
cp Makefile.config.example Makefile.config
## Refer to http://caffe.berkeleyvision.org/installation.html # Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN). # USE_CUDNN := 1 # CPU-only switch (uncomment to build without GPU support). # CPU_ONLY := 1 # To customize your choice of compiler, uncomment and set the following. # N.B. the default for Linux is g++ and the default for OSX is clang++ # CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need. CUDA_DIR := /usr/local/cuda # On Ubuntu 14.04, if cuda tools are installed via # "sudo apt-get install nvidia-cuda-toolkit" then use this instead: # CUDA_DIR := /usr # CUDA architecture setting: going with all of them. # For CUDA < 6.0, comment the *_50 lines for compatibility. CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \ -gencode arch=compute_20,code=sm_21 \ -gencode arch=compute_30,code=sm_30 \ -gencode arch=compute_35,code=sm_35 \ -gencode arch=compute_50,code=sm_50 \ -gencode arch=compute_50,code=compute_50 # BLAS choice: # atlas for ATLAS (default) # mkl for MKL # open for OpenBlas BLAS := atlas # Custom (MKL/ATLAS/OpenBLAS) include and lib directories. # Leave commented to accept the defaults for your choice of BLAS # (which should work)! # BLAS_INCLUDE := /path/to/your/blas # BLAS_LIB := /path/to/your/blas # Homebrew puts openblas in a directory that is not on the standard search path # BLAS_INCLUDE := $(shell brew --prefix openblas)/include # BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface. # MATLAB directory should contain the mex binary in /bin. # MATLAB_DIR := /usr/local # MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface. # We need to be able to find Python.h and numpy/arrayobject.h. #PYTHON_INCLUDE := /usr/include/python2.7 \ /usr/lib/python2.7/dist-packages/numpy/core/include # Anaconda Python distribution is quite popular. Include path: # Verify anaconda location, sometimes it's in root. ANACONDA_HOME := $(HOME)/anaconda PYTHON_INCLUDE := $(ANACONDA_HOME)/include \ $(ANACONDA_HOME)/include/python2.7 \ $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \ # We need to be able to find libpythonX.X.so or .dylib. #PYTHON_LIB := /usr/lib PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only) # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include # PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs) # WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here. INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies # INCLUDE_DIRS += $(shell brew --prefix)/include # LIBRARY_DIRS += $(shell brew --prefix)/lib # Uncomment to use `pkg-config` to specify OpenCV library paths. # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.) # USE_PKG_CONFIG := 1 BUILD_DIR := build DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171 # DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests. TEST_GPUID := 0 # enable pretty build (comment to see full commands) Q ?= @
make all -j4 make test make runtest
make pycaffe