Linux I2C子系统分析-I2C总线驱动

drivers/i2c/busses下包含各种I2C总线驱动,如S3C2440I2C总线驱动i2c-s3c2410.c,使用GPIO模拟I2C总线的驱动i2c-gpio.c,这里只分析i2c-gpio.c

i2c-gpio.c它是gpio模拟I2C总线的驱动,总线也是个设备,在这里将总线当作平台设备处理,那驱动当然是平台设备驱动,看它的驱动注册和注销函数。

static int __init i2c_gpio_init(void)
{
	int ret;

	ret = platform_driver_register(&i2c_gpio_driver);
	if (ret)
		printk(KERN_ERR "i2c-gpio: probe failed: %d\n", ret);

	return ret;
}
module_init(i2c_gpio_init);

static void __exit i2c_gpio_exit(void)
{
	platform_driver_unregister(&i2c_gpio_driver);
}
module_exit(i2c_gpio_exit);

没有什么好说的,它的初始化和注销函数就是注册和注销一个平台设备驱动,直接看它的platform_driver结构i2c_gpio_driver

static struct platform_driver i2c_gpio_driver = {
	.driver		= {
		.name	= "i2c-gpio",
		.owner	= THIS_MODULE,
	},
	.probe		= i2c_gpio_probe,
	.remove		= __devexit_p(i2c_gpio_remove),
};

小提示:是不是我们应该注册一个平台设备,以和这个驱动匹配,那先来注册这个平台设备。

先定义这个平台设备结构,至于怎么注册平台设备我想大家都应该知道吧。

#if defined(CONFIG_I2C_GPIO) | \ 
	defined(CONFIG_I2C_GPIO_MODULE) 
static struct i2c_gpio_platform_data i2c_gpio_adapter_data = { 
	.sda_pin = PINID_GPMI_D05, 
	.scl_pin = PINID_GPMI_D04, 
	.udelay = 5, //100KHz 
	.timeout = 100, 
	.sda_is_open_drain = 1, 
	.scl_is_open_drain = 1, 
}; 

static struct platform_device i2c_gpio = { 
	.name = "i2c-gpio", 
	.id = 0, 
	.dev = { 
		.platform_data = &i2c_gpio_adapter_data, 
		.release = mxs_nop_release, 
		}, 
}; 
#endif

在这里struct platform_device结构中的name字段要和struct platform_driverdriver字段中name字段要相同,因为平台总线就是通过这个来判断设备和驱动是否匹配的。注意这里的id将它赋值了0,至于到底有什么用,后面再来细看。这个结构里面还包含一个最重要的数据i2c_gpio_adapter_data,它struct i2c_gpio_platform_data结构类型变量,这个结构体类型定义在include/linux/i2c-gpio.h中。

struct i2c_gpio_platform_data {
	unsigned int	sda_pin;
	unsigned int	scl_pin;
	int		udelay;
	int		timeout;
	unsigned int	sda_is_open_drain:1;
	unsigned int	scl_is_open_drain:1;
	unsigned int	scl_is_output_only:1;
};

这个结构体主要描述gpio模拟i2c总线,sda_pinscl_pin表示使用哪两个IO管脚来模拟I2C总线,udelaytimeout分别为它的时钟频率和超时时间,sda_is_open_drainscl_is_open_drain表示sdascl这两个管脚是否是开漏(opendrain)电路,如果是设置为1scl_is_output_only表示scl这个管脚是否只是作为输出,如果是设置为1

回到驱动中,看其中最重要的i2c_gpio_probe

static int __devinit i2c_gpio_probe(struct platform_device *pdev)
{
	struct i2c_gpio_platform_data *pdata;
	struct i2c_algo_bit_data *bit_data;
	struct i2c_adapter *adap;
	int ret;

	pdata = pdev->dev.platform_data;
	if (!pdata)
		return -ENXIO;

	ret = -ENOMEM;
	adap = kzalloc(sizeof(struct i2c_adapter), GFP_KERNEL);
	if (!adap)
		goto err_alloc_adap;
	bit_data = kzalloc(sizeof(struct i2c_algo_bit_data), GFP_KERNEL);
	if (!bit_data)
		goto err_alloc_bit_data;

	ret = gpio_request(pdata->sda_pin, "sda");
	if (ret)
		goto err_request_sda;
	ret = gpio_request(pdata->scl_pin, "scl");
	if (ret)
		goto err_request_scl;

	if (pdata->sda_is_open_drain) {
		gpio_direction_output(pdata->sda_pin, 1);
		bit_data->setsda = i2c_gpio_setsda_val;
	} else {
		gpio_direction_input(pdata->sda_pin);
		bit_data->setsda = i2c_gpio_setsda_dir;
	}

	if (pdata->scl_is_open_drain || pdata->scl_is_output_only) {
		gpio_direction_output(pdata->scl_pin, 1);
		bit_data->setscl = i2c_gpio_setscl_val;
	} else {
		gpio_direction_input(pdata->scl_pin);
		bit_data->setscl = i2c_gpio_setscl_dir;
	}

	if (!pdata->scl_is_output_only)
		bit_data->getscl = i2c_gpio_getscl;
	bit_data->getsda = i2c_gpio_getsda;

	if (pdata->udelay)
		bit_data->udelay = pdata->udelay;
	else if (pdata->scl_is_output_only)
		bit_data->udelay = 50;			/* 10 kHz */
	else
		bit_data->udelay = 5;			/* 100 kHz */

	if (pdata->timeout)
		bit_data->timeout = pdata->timeout;
	else
		bit_data->timeout = HZ / 10;		/* 100 ms */

	bit_data->data = pdata;

	adap->owner = THIS_MODULE;
	snprintf(adap->name, sizeof(adap->name), "i2c-gpio%d", pdev->id);
	adap->algo_data = bit_data;
	adap->class = I2C_CLASS_HWMON | I2C_CLASS_SPD;
	adap->dev.parent = &pdev->dev;

	/*
	 * If "dev->id" is negative we consider it as zero.
	 * The reason to do so is to avoid sysfs names that only make
	 * sense when there are multiple adapters.
	 */
	adap->nr = (pdev->id != -1) ? pdev->id : 0;
	ret = i2c_bit_add_numbered_bus(adap);
	if (ret)
		goto err_add_bus;

	platform_set_drvdata(pdev, adap);

	dev_info(&pdev->dev, "using pins %u (SDA) and %u (SCL%s)\n",
		 pdata->sda_pin, pdata->scl_pin,
		 pdata->scl_is_output_only
		 ? ", no clock stretching" : "");

	return 0;

err_add_bus:
	gpio_free(pdata->scl_pin);
err_request_scl:
	gpio_free(pdata->sda_pin);
err_request_sda:
	kfree(bit_data);
err_alloc_bit_data:
	kfree(adap);
err_alloc_adap:
	return ret;
}

从这句开始pdata= pdev->dev.platform_data;这不正是我们在平台设备结构中定义的数据吗。然后是使用kzalloc申请两段内存空间,一个是为结构struct i2c_adapter申请的,另一个是为结构structi2c_algo_bit_data申请的。

struct i2c_adapter结构定义在include/linux/i2c.h

struct i2c_adapter {
	struct module *owner;
	unsigned int id;
	unsigned int class;		  /* classes to allow probing for */
	const struct i2c_algorithm *algo; /* the algorithm to access the bus */
	void *algo_data;

	/* data fields that are valid for all devices	*/
	u8 level; 			/* nesting level for lockdep */
	struct mutex bus_lock;

	int timeout;			/* in jiffies */
	int retries;
	struct device dev;		/* the adapter device */

	int nr;
	char name[48];
	struct completion dev_released;
};

I2C子系统中,I2C适配器使用结构struct i2c_adapter描述,代表一条实际的I2C总线。

struct i2c_algo_bit_data结构定义在include/linux/i2c-algo-bit.h

struct i2c_algo_bit_data {
	void *data;		/* private data for lowlevel routines */
	void (*setsda) (void *data, int state);
	void (*setscl) (void *data, int state);
	int  (*getsda) (void *data);
	int  (*getscl) (void *data);

	/* local settings */
	int udelay;		/* half clock cycle time in us,
				   minimum 2 us for fast-mode I2C,
				   minimum 5 us for standard-mode I2C and SMBus,
				   maximum 50 us for SMBus */
	int timeout;		/* in jiffies */
};

这个结构主要用来定义对GPIO管脚的一些操作,还是回到probe

接下来使用gpio_request去申请这个两个GPIO管脚,申请的目的是为了防止重复使用管脚。然后是根据struct i2c_gpio_platform_data结构中定义的后面三个数据对struct i2c_algo_bit_data结构中的函数指针做一些赋值操作。接下来是I2C时钟频率和超时设置,如果在struct i2c_gpio_platform_data结构中定义了值,那么就采用定义的值,否则就采用默认的值。然后是对struct i2c_adapter结构的一些赋值操作,比如指定它的父设备为这里的平台设备,前面在平台设备中定义了一个id,这里用到了,赋给了struct i2c_adapter中的nr成员,这个值表示总线号,这里的总线号和硬件无关,只是在软件上的区分。然后到了最后的主角i2c_bit_add_numbered_bus,这个函数定义在drivers/i2c/algos/i2c-algo-bit.c

int i2c_bit_add_numbered_bus(struct i2c_adapter *adap)
{
	int err;

	err = i2c_bit_prepare_bus(adap);
	if (err)
		return err;

	return i2c_add_numbered_adapter(adap);
}

先看i2c_bit_prepare_bus函数

static int i2c_bit_prepare_bus(struct i2c_adapter *adap)
{
	struct i2c_algo_bit_data *bit_adap = adap->algo_data;

	if (bit_test) {
		int ret = test_bus(bit_adap, adap->name);
		if (ret < 0)
			return -ENODEV;
	}

	/* register new adapter to i2c module... */
	adap->algo = &i2c_bit_algo;
	adap->retries = 3;

	return 0;
}

bit_test为模块参数,这里不管它,看这样一句adap->algo= &i2c_bit_algo;

来看这个结构定义

static const struct i2c_algorithm i2c_bit_algo = {
	.master_xfer	= bit_xfer,
	.functionality	= bit_func,
};

先看这个结构类型在哪里定义的include/linux/i2c.h

struct i2c_algorithm {
	/* If an adapter algorithm can't do I2C-level access, set master_xfer
	   to NULL. If an adapter algorithm can do SMBus access, set
	   smbus_xfer. If set to NULL, the SMBus protocol is simulated
	   using common I2C messages */
	/* master_xfer should return the number of messages successfully
	   processed, or a negative value on error */
	int (*master_xfer)(struct i2c_adapter *adap, struct i2c_msg *msgs,
			   int num);
	int (*smbus_xfer) (struct i2c_adapter *adap, u16 addr,
			   unsigned short flags, char read_write,
			   u8 command, int size, union i2c_smbus_data *data);

	/* To determine what the adapter supports */
	u32 (*functionality) (struct i2c_adapter *);
};

其实也没什么,就三个函数指针外加一长串注释

这个结构的master_xfer指针为主机的数据传输,具体来看bit_xfer这个函数,这个函数和I2C协议相关,I2C协议规定要先发送起始信号,才能开始进行数据的传输,最后数据传输完成后发送停止信号,看接下来代码对I2C协议要熟悉,所以这里的关键点是I2C协议。

static int bit_xfer(struct i2c_adapter *i2c_adap,
		    struct i2c_msg msgs[], int num)
{
	struct i2c_msg *pmsg;
	struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
	int i, ret;
	unsigned short nak_ok;

	bit_dbg(3, &i2c_adap->dev, "emitting start condition\n");
	/*发送起始信号*/
	i2c_start(adap);
	for (i = 0; i < num; i++) {
		pmsg = &msgs[i];
		nak_ok = pmsg->flags & I2C_M_IGNORE_NAK;
		if (!(pmsg->flags & I2C_M_NOSTART)) {
			if (i) {
				bit_dbg(3, &i2c_adap->dev, "emitting "
					"repeated start condition\n");
				i2c_repstart(adap);
			}
			ret = bit_doAddress(i2c_adap, pmsg);
			if ((ret != 0) && !nak_ok) {
				bit_dbg(1, &i2c_adap->dev, "NAK from "
					"device addr 0x%02x msg #%d\n",
					msgs[i].addr, i);
				goto bailout;
			}
		}
		if (pmsg->flags & I2C_M_RD) {
			/* read bytes into buffer*/
			ret = readbytes(i2c_adap, pmsg);
			if (ret >= 1)
				bit_dbg(2, &i2c_adap->dev, "read %d byte%s\n",
					ret, ret == 1 ? "" : "s");
			if (ret < pmsg->len) {
				if (ret >= 0)
					ret = -EREMOTEIO;
				goto bailout;
			}
		} else {
			/* write bytes from buffer */
			ret = sendbytes(i2c_adap, pmsg);
			if (ret >= 1)
				bit_dbg(2, &i2c_adap->dev, "wrote %d byte%s\n",
					ret, ret == 1 ? "" : "s");
			if (ret < pmsg->len) {
				if (ret >= 0)
					ret = -EREMOTEIO;
				goto bailout;
			}
		}
	}
	ret = i;

bailout:
	bit_dbg(3, &i2c_adap->dev, "emitting stop condition\n");
	i2c_stop(adap);
	return ret;
}

1.发送起始信号

i2c_start(adap);

看这个函数前,先看I2C协议怎么定义起始信号的

Linux I2C子系统分析-I2C总线驱动_第1张图片

起始信号就是在SCL为高电平期间,SDA从高到低的跳变,再来看代码是怎么实现的

static void i2c_start(struct i2c_algo_bit_data *adap)
{
	/* assert: scl, sda are high */
	setsda(adap, 0);
	udelay(adap->udelay);
	scllo(adap);
}

这些setsdasetscl这些都是使用的总线的函数,在这里是使用的i2c-gpio.c中定义的函数,还记得那一系列判断赋值吗。

#define setsda(adap, val)	adap->setsda(adap->data, val)
#define setscl(adap, val)	adap->setscl(adap->data, val)
#define getsda(adap)		adap->getsda(adap->data)
#define getscl(adap)		adap->getscl(adap->data)

2.往下是个大的for循环

到了这里又不得不说这个struct i2c_msg结构,这个结构定义在include/linux/i2c.h

struct i2c_msg {
	__u16 addr;	/* slave address			*/
	__u16 flags;
#define I2C_M_TEN		0x0010	/* this is a ten bit chip address */
#define I2C_M_RD		0x0001	/* read data, from slave to master */
#define I2C_M_NOSTART		0x4000	/* if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_REV_DIR_ADDR	0x2000	/* if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_IGNORE_NAK	0x1000	/* if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_NO_RD_ACK		0x0800	/* if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_RECV_LEN		0x0400	/* length will be first received byte */
	__u16 len;		/* msg length				*/
	__u8 *buf;		/* pointer to msg data			*/
};

这个结构专门用于数据传输相关的addrI2C设备地址,flags为一些标志位,len为数据的长度,buf为数据。这里宏定义的一些标志还是需要了解一下。

I2C_M_TEN表示10位设备地址

I2C_M_RD读标志

I2C_M_NOSTART无起始信号标志

I2C_M_IGNORE_NAK忽略应答信号标志

回到for,这里的num代表有几个struct i2c_msg,进入for语句,接下来是个if语句,判断这个设备是否定义了I2C_M_NOSTART标志,这个标志主要用于写操作时,不必重新发送起始信号和设备地址,但是对于读操作就不同了,要调用i2c_repstart这个函数去重新发送起始信号,调用bit_doAddress函数去重新构造设备地址字节,来看这个函数。

static int bit_doAddress(struct i2c_adapter *i2c_adap, struct i2c_msg *msg)
{
	unsigned short flags = msg->flags;
	unsigned short nak_ok = msg->flags & I2C_M_IGNORE_NAK;
	struct i2c_algo_bit_data *adap = i2c_adap->algo_data;

	unsigned char addr;
	int ret, retries;

	retries = nak_ok ? 0 : i2c_adap->retries;

	if (flags & I2C_M_TEN) {
		/* a ten bit address */
		addr = 0xf0 | ((msg->addr >> 7) & 0x03);
		bit_dbg(2, &i2c_adap->dev, "addr0: %d\n", addr);
		/* try extended address code...*/
		ret = try_address(i2c_adap, addr, retries);
		if ((ret != 1) && !nak_ok)  {
			dev_err(&i2c_adap->dev,
				"died at extended address code\n");
			return -EREMOTEIO;
		}
		/* the remaining 8 bit address */
		ret = i2c_outb(i2c_adap, msg->addr & 0x7f);
		if ((ret != 1) && !nak_ok) {
			/* the chip did not ack / xmission error occurred */
			dev_err(&i2c_adap->dev, "died at 2nd address code\n");
			return -EREMOTEIO;
		}
		if (flags & I2C_M_RD) {
			bit_dbg(3, &i2c_adap->dev, "emitting repeated "
				"start condition\n");
			i2c_repstart(adap);
			/* okay, now switch into reading mode */
			addr |= 0x01;
			ret = try_address(i2c_adap, addr, retries);
			if ((ret != 1) && !nak_ok) {
				dev_err(&i2c_adap->dev,
					"died at repeated address code\n");
				return -EREMOTEIO;
			}
		}
	} else {		/* normal 7bit address	*/
		addr = msg->addr << 1;
		if (flags & I2C_M_RD)
			addr |= 1;
		if (flags & I2C_M_REV_DIR_ADDR)
			addr ^= 1;
		ret = try_address(i2c_adap, addr, retries);
		if ((ret != 1) && !nak_ok)
			return -ENXIO;
	}

	return 0;
}

这里先做了一个判断,10位设备地址和7位设备地址分别做不同的处理,通常一条I2C总线上不会挂那么多I2C设备,所以10位地址不常用,直接看对7位地址的处理。struct i2c_msgaddr中是真正的设备地址,而这里发送的addr7位才是设备地址,最低位为读写位,如果为读,最低位为1,如果为写,最低位为0。所以要将struct i2c_msgaddr向左移1位,如果定义了I2C_M_RD标志,就将addr或上1,前面就说过,这个标志就代表读,如果是写,这里就不用处理,因为最低位本身就是0。最后调用try_address函数将这个地址字节发送出去。

static int try_address(struct i2c_adapter *i2c_adap,
		       unsigned char addr, int retries)
{
	struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
	int i, ret = 0;

	for (i = 0; i <= retries; i++) {
		ret = i2c_outb(i2c_adap, addr);
		if (ret == 1 || i == retries)
			break;
		bit_dbg(3, &i2c_adap->dev, "emitting stop condition\n");
		i2c_stop(adap);
		udelay(adap->udelay);
		yield();
		bit_dbg(3, &i2c_adap->dev, "emitting start condition\n");
		i2c_start(adap);
	}
	if (i && ret)
		bit_dbg(1, &i2c_adap->dev, "Used %d tries to %s client at "
			"0x%02x: %s\n", i + 1,
			addr & 1 ? "read from" : "write to", addr >> 1,
			ret == 1 ? "success" : "failed, timeout?");
	return ret;
}

最主要的就是调用i2c_outb发送一个字节,retries为重复次数,看前面adap->retries= 3;

如果发送失败,也就是设备没有给出应答信号,那就发送停止信号,发送起始信号,再发送这个地址字节,这就叫retries。来看这个具体的i2c_outb函数

static int i2c_outb(struct i2c_adapter *i2c_adap, unsigned char c)
{
	int i;
	int sb;
	int ack;
	struct i2c_algo_bit_data *adap = i2c_adap->algo_data;

	/* assert: scl is low */
	for (i = 7; i >= 0; i--) {
		sb = (c >> i) & 1;
		setsda(adap, sb);
		udelay((adap->udelay + 1) / 2);
		if (sclhi(adap) < 0) { /* timed out */
			bit_dbg(1, &i2c_adap->dev, "i2c_outb: 0x%02x, "
				"timeout at bit #%d\n", (int)c, i);
			return -ETIMEDOUT;
		}
		/* FIXME do arbitration here:
		 * if (sb && !getsda(adap)) -> ouch! Get out of here.
		 *
		 * Report a unique code, so higher level code can retry
		 * the whole (combined) message and *NOT* issue STOP.
		 */
		scllo(adap);
	}
	sdahi(adap);
	if (sclhi(adap) < 0) { /* timeout */
		bit_dbg(1, &i2c_adap->dev, "i2c_outb: 0x%02x, "
			"timeout at ack\n", (int)c);
		return -ETIMEDOUT;
	}

	/* read ack: SDA should be pulled down by slave, or it may
	 * NAK (usually to report problems with the data we wrote).
	 */
	ack = !getsda(adap);    /* ack: sda is pulled low -> success */
	bit_dbg(2, &i2c_adap->dev, "i2c_outb: 0x%02x %s\n", (int)c,
		ack ? "A" : "NA");

	scllo(adap);
	return ack;
	/* assert: scl is low (sda undef) */
}

这个函数有两个参数,一个是structi2c_adapter代表I2C主机,一个是发送的字节数据。那么I2C是怎样将一个字节数据发送出去的呢,那再来看看协议。

Linux I2C子系统分析-I2C总线驱动_第2张图片

首先是发送字节数据的最高位,在时钟为高电平期间将一位数据发送出去,最后是发送字节数据的最低位。发送完成之后,我们需要一个ACK信号,要不然我怎么知道发送成功没有,ACK信号就是在第九个时钟周期时数据线为低,所以在一个字节数据传送完成后,还要将数据线拉高,我们看程序中就是这一句sdahi(adap);等待这个ACK信号的到来,这样一个字节数据就发送完成。

回到bit_xfer函数中,前面只是将设备地址字节发送出去了,那么接下来就是该发送数据了。

注意:这里的数据包括操作设备的基地址

如果是读则调用readbytes函数去读,如果是写则调用sendbytes去写,先看readbytes函数

static int readbytes(struct i2c_adapter *i2c_adap, struct i2c_msg *msg)
{
	int inval;
	int rdcount = 0;	/* counts bytes read */
	unsigned char *temp = msg->buf;
	int count = msg->len;
	const unsigned flags = msg->flags;

	while (count > 0) {
		inval = i2c_inb(i2c_adap);
		if (inval >= 0) {
			*temp = inval;
			rdcount++;
		} else {   /* read timed out */
			break;
		}

		temp++;
		count--;

		/* Some SMBus transactions require that we receive the
		   transaction length as the first read byte. */
		if (rdcount == 1 && (flags & I2C_M_RECV_LEN)) {
			if (inval <= 0 || inval > I2C_SMBUS_BLOCK_MAX) {
				if (!(flags & I2C_M_NO_RD_ACK))
					acknak(i2c_adap, 0);
				dev_err(&i2c_adap->dev, "readbytes: invalid "
					"block length (%d)\n", inval);
				return -EREMOTEIO;
			}
			/* The original count value accounts for the extra
			   bytes, that is, either 1 for a regular transaction,
			   or 2 for a PEC transaction. */
			count += inval;
			msg->len += inval;
		}

		bit_dbg(2, &i2c_adap->dev, "readbytes: 0x%02x %s\n",
			inval,
			(flags & I2C_M_NO_RD_ACK)
				? "(no ack/nak)"
				: (count ? "A" : "NA"));

		if (!(flags & I2C_M_NO_RD_ACK)) {
			inval = acknak(i2c_adap, count);
			if (inval < 0)
				return inval;
		}
	}
	return rdcount;
}

其中一个大的while循环,调用i2c_inb去读一个字节,count为数据的长度,单位为多少个字节,

那就来看i2c_inb函数。

static int i2c_inb(struct i2c_adapter *i2c_adap)
{
	/* read byte via i2c port, without start/stop sequence	*/
	/* acknowledge is sent in i2c_read.			*/
	int i;
	unsigned char indata = 0;
	struct i2c_algo_bit_data *adap = i2c_adap->algo_data;

	/* assert: scl is low */
	sdahi(adap);
	for (i = 0; i < 8; i++) {
		if (sclhi(adap) < 0) { /* timeout */
			bit_dbg(1, &i2c_adap->dev, "i2c_inb: timeout at bit "
				"#%d\n", 7 - i);
			return -ETIMEDOUT;
		}
		indata *= 2;
		if (getsda(adap))
			indata |= 0x01;
		setscl(adap, 0);
		udelay(i == 7 ? adap->udelay / 2 : adap->udelay);
	}
	/* assert: scl is low */
	return indata;
}

再来看sendbytes函数

static int sendbytes(struct i2c_adapter *i2c_adap, struct i2c_msg *msg)
{
	const unsigned char *temp = msg->buf;
	int count = msg->len;
	unsigned short nak_ok = msg->flags & I2C_M_IGNORE_NAK;
	int retval;
	int wrcount = 0;

	while (count > 0) {
		retval = i2c_outb(i2c_adap, *temp);

		/* OK/ACK; or ignored NAK */
		if ((retval > 0) || (nak_ok && (retval == 0))) {
			count--;
			temp++;
			wrcount++;

		/* A slave NAKing the master means the slave didn't like
		 * something about the data it saw.  For example, maybe
		 * the SMBus PEC was wrong.
		 */
		} else if (retval == 0) {
			dev_err(&i2c_adap->dev, "sendbytes: NAK bailout.\n");
			return -EIO;

		/* Timeout; or (someday) lost arbitration
		 *
		 * FIXME Lost ARB implies retrying the transaction from
		 * the first message, after the "winning" master issues
		 * its STOP.  As a rule, upper layer code has no reason
		 * to know or care about this ... it is *NOT* an error.
		 */
		} else {
			dev_err(&i2c_adap->dev, "sendbytes: error %d\n",
					retval);
			return retval;
		}
	}
	return wrcount;
}

也是一个大的while循环,同发送地址字节一样,也是调用i2c_outb去发送一个字节,count也是数据长度,由于i2c_outb函数在前面发送设备地址那里已经介绍了,这里也就不贴出来了。

还是回到bit_xfer函数,数据传输完成后,调用i2c_stop函数发送停止信号。我们看停止信号函数怎么去实现的。

static void i2c_stop(struct i2c_algo_bit_data *adap)
{
	/* assert: scl is low */
	sdalo(adap);
	sclhi(adap);
	setsda(adap, 1);
	udelay(adap->udelay);
}

看前面发送起始信号的那张图,停止信号就是在时钟为高电平期间,数据线从低到高的跳变。我们看程序是先将数据线拉低,将时钟线拉高,最后将数据拉高,这样就够成了一个停止信号。

还是回到i2c_bit_add_numbered_bus这个函数中来,看另外一个函数调用i2c_add_numbered_adapter

int i2c_add_numbered_adapter(struct i2c_adapter *adap)
{
	int	id;
	int	status;

	if (adap->nr & ~MAX_ID_MASK)
		return -EINVAL;

retry:
	if (idr_pre_get(&i2c_adapter_idr, GFP_KERNEL) == 0)
		return -ENOMEM;

	mutex_lock(&core_lock);
	/* "above" here means "above or equal to", sigh;
	 * we need the "equal to" result to force the result
	 */
	status = idr_get_new_above(&i2c_adapter_idr, adap, adap->nr, &id);
	if (status == 0 && id != adap->nr) {
		status = -EBUSY;
		idr_remove(&i2c_adapter_idr, id);
	}
	mutex_unlock(&core_lock);
	if (status == -EAGAIN)
		goto retry;

	if (status == 0)
		status = i2c_register_adapter(adap);
	return status;
}

最重要的是这句i2c_register_adapter,注册这条I2C总线,进去看看

static int i2c_register_adapter(struct i2c_adapter *adap)
{
	int res = 0, dummy;

	/* Can't register until after driver model init */
	if (unlikely(WARN_ON(!i2c_bus_type.p))) {
		res = -EAGAIN;
		goto out_list;
	}

	mutex_init(&adap->bus_lock);

	/* Set default timeout to 1 second if not already set */
	if (adap->timeout == 0)
		adap->timeout = HZ;

	dev_set_name(&adap->dev, "i2c-%d", adap->nr);
	adap->dev.bus = &i2c_bus_type;
	adap->dev.type = &i2c_adapter_type;
	res = device_register(&adap->dev);
	if (res)
		goto out_list;

	dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name);

#ifdef CONFIG_I2C_COMPAT
	res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev,
				       adap->dev.parent);
	if (res)
		dev_warn(&adap->dev,
			 "Failed to create compatibility class link\n");
#endif

	/* create pre-declared device nodes */
	if (adap->nr < __i2c_first_dynamic_bus_num)
		i2c_scan_static_board_info(adap);

	/* Notify drivers */
	mutex_lock(&core_lock);
	dummy = bus_for_each_drv(&i2c_bus_type, NULL, adap,
				 i2c_do_add_adapter);
	mutex_unlock(&core_lock);

	return 0;

out_list:
	mutex_lock(&core_lock);
	idr_remove(&i2c_adapter_idr, adap->nr);
	mutex_unlock(&core_lock);
	return res;
}

看内核代码有时就会这样,会陷入内核代码的汪洋大海中,而拔不出来,直接后果是最后都忘记看这段代码的目的,丧失继续看下去的信心。所以为了避免这样情况出现,所以最好在开始看代码的时候要明确目标,我通过这段代码到底要了解什么东西,主干要抓住,其它枝叶就不要看了。

在这里我认为主要的有

1.注册这个I2C总线设备

adap->dev.bus = &i2c_bus_type;
adap->dev.type = &i2c_adapter_type;
res = device_register(&adap->dev);

这个设备的总线类型为i2c_bus_type

struct bus_type i2c_bus_type = {
	.name		= "i2c",
	.match		= i2c_device_match,
	.probe		= i2c_device_probe,
	.remove		= i2c_device_remove,
	.shutdown	= i2c_device_shutdown,
	.suspend	= i2c_device_suspend,
	.resume		= i2c_device_resume,
};

看一下它的match函数

static int i2c_device_match(struct device *dev, struct device_driver *drv)
{
	struct i2c_client	*client = i2c_verify_client(dev);
	struct i2c_driver	*driver;

	if (!client)
		return 0;

	driver = to_i2c_driver(drv);
	/* match on an id table if there is one */
	if (driver->id_table)
		return i2c_match_id(driver->id_table, client) != NULL;

	return 0;
}

这个match函数主要用来匹配我们的I2C设备和I2C驱动的,如果匹配成功,最后会调用驱动的probe函数,来看它如何匹配的。

static const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id,
						const struct i2c_client *client)
{
	while (id->name[0]) {
		if (strcmp(client->name, id->name) == 0)
			return id;
		id++;
	}
	return NULL;
}

就是判断I2C设备的name字段和驱动中id_table中定义的name字段是否相等。

2.往这条总线上添加设备

static void i2c_scan_static_board_info(struct i2c_adapter *adapter)
{
	struct i2c_devinfo	*devinfo;

	down_read(&__i2c_board_lock);
	list_for_each_entry(devinfo, &__i2c_board_list, list) {
		if (devinfo->busnum == adapter->nr
				&& !i2c_new_device(adapter,
						&devinfo->board_info))
			dev_err(&adapter->dev,
				"Can't create device at 0x%02x\n",
				devinfo->board_info.addr);
	}
	up_read(&__i2c_board_lock);
}

遍历__i2c_board_list这条链表,看下面的if语句,首先要让struct i2c_devinfo结构中的busnum等于struct i2c_adapter中的nr,我们前面也说了,这个nr就是i2c总线的总线号,这里可以理解为是在往这条总线上添加设备。所以,如果我们要向I2C注册一个I2C设备的话,直接向__i2c_board_list添加一个设备信息就可以了,先来看这个设备信息结构是怎么定义的。

struct i2c_board_info {
	char		type[I2C_NAME_SIZE];
	unsigned short	flags;
	unsigned short	addr;
	void		*platform_data;
	struct dev_archdata	*archdata;
	int		irq;
};

定义这样一个信息呢一般使用一个宏I2C_BOARD_INFO

#define I2C_BOARD_INFO(dev_type, dev_addr) \
	.type = dev_type, .addr = (dev_addr)

dev_type为设备的名字,前面也说了,这个name一定要和I2C驱动相同。addr为设备的地址。

定义了这样一组信息之后呢,接下来当然是往链表添加这些信息了。

int __init
i2c_register_board_info(int busnum,
	struct i2c_board_info const *info, unsigned len)
{
	int status;

	down_write(&__i2c_board_lock);

	/* dynamic bus numbers will be assigned after the last static one */
	if (busnum >= __i2c_first_dynamic_bus_num)
		__i2c_first_dynamic_bus_num = busnum + 1;

	for (status = 0; len; len--, info++) {
		struct i2c_devinfo	*devinfo;

		devinfo = kzalloc(sizeof(*devinfo), GFP_KERNEL);
		if (!devinfo) {
			pr_debug("i2c-core: can't register boardinfo!\n");
			status = -ENOMEM;
			break;
		}

		devinfo->busnum = busnum;
		devinfo->board_info = *info;
		list_add_tail(&devinfo->list, &__i2c_board_list);
	}

	up_write(&__i2c_board_lock);

	return status;
}

第一个参数呢需要注意,它是I2C总线号,一定要和具体的I2C总线对应。我们看又定义了这样一个结构struct i2c_devinfo

struct i2c_devinfo {
	struct list_head	list;
	int			busnum;
	struct i2c_board_info	board_info;
};

最后是调用list_add_tail__i2c_board_list这条链表添加设备信息。

然后是i2c_new_device

struct i2c_client *
i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
{
	struct i2c_client	*client;
	int			status;

	/*为I2C设备申请内存*/
	client = kzalloc(sizeof *client, GFP_KERNEL);
	if (!client)
		return NULL;

	/*指定I2C设备的总线*/
	client->adapter = adap;

	client->dev.platform_data = info->platform_data;

	if (info->archdata)
		client->dev.archdata = *info->archdata;

	client->flags = info->flags;
	client->addr = info->addr; /*I2C设备地址*/
	client->irq = info->irq;

	strlcpy(client->name, info->type, sizeof(client->name));

	/*检查这个地址有没有被设备占用*/
	/* Check for address business */
	status = i2c_check_addr(adap, client->addr);
	if (status)
		goto out_err;

	client->dev.parent = &client->adapter->dev; /*指定设备的父设备*/
	client->dev.bus = &i2c_bus_type; /*指定设备的总线类型*/
	client->dev.type = &i2c_client_type;

	dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap),
		     client->addr);
	status = device_register(&client->dev); /*注册设备*/
	if (status)
		goto out_err;

	dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n",
		client->name, dev_name(&client->dev));

	return client;

out_err:
	dev_err(&adap->dev, "Failed to register i2c client %s at 0x%02x "
		"(%d)\n", client->name, client->addr, status);
	kfree(client);
	return NULL;
}

这个函数的功能是新建一个I2C设备并注册它,在I2C子系统中,I2C设备使用结构structi2c_client描述,那么首先要申请内存空间,I2C设备的主机是谁,必须知道挂载到哪条总线上的,然后就是一些赋值操作,最后就是注册设备,那么这个设备就实实在在的挂在到这条总线上了,这也是新的I2C设备注册方式。

3.i2c_do_add_adapter

你看说着说着就跑远了

static int i2c_do_add_adapter(struct device_driver *d, void *data)
{
	struct i2c_driver *driver = to_i2c_driver(d);
	struct i2c_adapter *adap = data;

	/* Detect supported devices on that bus, and instantiate them */
	i2c_detect(adap, driver);

	/* Let legacy drivers scan this bus for matching devices */
	if (driver->attach_adapter) {
		/* We ignore the return code; if it fails, too bad */
		driver->attach_adapter(adap);
	}
	return 0;
}

前面通过i2c_scan_static_board_infoI2C总线上添加设备是新的方式,而这里调用每个I2C设备驱动的attach_adapter函数,然后在attach_adapter函数中去实现设备的注册,这是老的方式,i2c-dev.c中就是采用的这种方式。至此,总线这块就看完了。

你可能感兴趣的:(Algorithm,c,linux,struct,list,output)