有向图强连通分量tarjan算法

转自:http://www.byvoid.com/blog/scc-tarjan/

http://blog.csdn.net/geniusluzh/article/details/6601514

在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components)。

下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。

直接根据定义,用双向遍历取交集的方法求强连通分量,时间复杂度为O(N^2+M)。更好的方法是Kosaraju算法或Tarjan算法,两者的时间复杂度都是O(N+M)。本文介绍的是Tarjan算法。

[Tarjan算法]

Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。

定义DFN(u)为节点u搜索的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。由定义可以得出,

当DFN(u)=Low(u)时,以u为根的搜索子树上所有节点是一个强连通分量。


接下来是对算法流程的演示。

从节点1开始DFS,把遍历到的节点加入栈中。搜索到节点u=6时,DFN[6]=LOW[6],找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量。

返回节点5,发现DFN[5]=LOW[5],退栈后{5}为一个强连通分量。

返回节点3,继续搜索到节点4,把4加入堆栈。发现节点4向节点1有后向边,节点1还在栈中,所以LOW[4]=1。节点6已经出栈,(4,6)是横叉边,返回3,(3,4)为树枝边,所以LOW[3]=LOW[4]=1。

继续回到节点1,最后访问节点2。访问边(2,4),4还在栈中,所以LOW[2]=DFN[4]=5。返回1后,发现DFN[1]=LOW[1],把栈中节点全部取出,组成一个连通分量{1,3,4,2}。

至此,算法结束。经过该算法,求出了图中全部的三个强连通分量{1,3,4,2},{5},{6}。

可以发现,运行Tarjan算法的过程中,每个顶点都被访问了一次,且只进出了一次堆栈,每条边也只被访问了一次,所以该算法的时间复杂度为O(N+M)。

求有向图的强连通分量还有一个强有力的算法,为Kosaraju算法。Kosaraju是基于对有向图及其逆图两次DFS的方法,其时间复杂度也是O(N+M)。与Trajan算法相比,Kosaraju算法可能会稍微更直观一些。但是Tarjan只用对原图进行一次DFS,不用建立逆图,更简洁。在实际的测试中,Tarjan算法的运行效率也比Kosaraju算法高30%左右。此外,该Tarjan算法与求无向图的双连通分量(割点、桥)的Tarjan算法也有着很深的联系。学习该Tarjan算法,也有助于深入理解求双连通分量的Tarjan算法,两者可以类比、组合理解。

求有向图的强连通分量的Tarjan算法是以其发明者Robert Tarjan命名的。Robert Tarjan还发明了求双连通分量的Tarjan算法,以及求最近公共祖先的离线Tarjan算法,在此对Tarjan表示崇高的敬意。

附:tarjan算法的C++程序


void tarjan(int i)
{
	int j;
	DFN[i]=LOW[i]=++Dindex;
	instack[i]=true;
	Stap[++Stop]=i;
	for (edge *e=V[i];e;e=e->next)
	{
		j=e->t;
		if (!DFN[j])
		{
			tarjan(j);
			if (LOW[j]<LOW[i])
				LOW[i]=LOW[j];
		}
		else if (instack[j] && DFN[j]<LOW[i])
			LOW[i]=DFN[j];
	}
	if (DFN[i]==LOW[i])
	{
		Bcnt++;
		do
		{
			j=Stap[Stop--];
			instack[j]=false;
			Belong[j]=Bcnt;
		}
		while (j!=i);
	}
}
void solve()
{
	int i;
	Stop=Bcnt=Dindex=0;
	memset(DFN,0,sizeof(DFN));
	for (i=1;i<=N;i++)
		if (!DFN[i])
			tarjan(i);
}




强连通分量是有向图中的概念,我们先说强连通分量的定义吧:在一个图的子图中,任意两个点相互可达,也就是存在互通的路径,那么这个子图就是强连通分量(或者称为强连通分支)。如果一个有向图的任意两个点相互可达,那么这个图就称为强连通图。

        我们常用的求强连通分量的算法有两个,一个是Kosaraju算法,这个算法是基于两次dfs来实现的;还有一个就是Tarjan算法,这个算法完成一次dfs就可以找到图中的强连通分支。我的这篇文章主要介绍Tarjan算法。

       Tarjan算法是基于这样一个原理:如果u是某个强连通分量的根,那么:

(1)u不存在路径可以返回到它的祖先

(2)u的子树也不存在路径可以返回到u的祖先。

        因此我们在实现Tarjan算法的时候,使用dfsnum[i]记录节点i被访问的时间,也可以理解为在访问该点之前已经访问的点的个数。然后使用数组low[i]记录点i或者i的子树最小可以返回到的节点(在栈中)的次序号。

        这里还要说一下low[i]的更新过程,

if(v是i向下dfs的树边) low[i]=min(low[i],low[v]);//这里也就是说low[i]表示i或者i的子树所能追回到的最小的点序号。

if(v不是树边也不是横叉边) low[i]=min(low[i],dfsnum[v]);//其实这里你直接更新成low[v]代替dfsnum[v]也是可以的

        根据上面的原理,我们可以发现只有当dfsnum[i]==low[i]的时候就正好是强连通分量的根。这个时候我们把在栈中的点(在遇到根之前在栈中的点)出栈,并且标记好点所属的强连通分支的编号。(dfsnum[i]==low[i]主要思想还是说明了,有从i经过一些结点回到i结点的回路,有环肯定就是强联通分支)

        整个Tarjan算法跑下来就可以完成强连通分支的求解了。

        下面我贴上我的在HDU 1269上判断一个图是否是强连通图的代码,这个代码其实就完成了Tarjan算法,最后只要简单判断下整个图是否是只有一个强连通分支就可以了。


#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#define MAX 100010
int dfsnum[MAX],dfsNum,low[MAX];
int sccnum[MAX],sccNum;
int instack[MAX],st[MAX],top;

typedef struct EDGE
{
    int v,next;
}edge;
edge e[MAX];
int edgeNum;
int head[MAX];

void insertEdge(int a,int b)//边a--->b
{
    e[edgeNum].v=b;//v记录的是边的尾
    e[edgeNum].next=head[a];//以点a开始的所有邻接边
    head[a]=edgeNum++;//以点a为头的第一条边;同理,第二条边是e[head[a]].next,
}

void Tarjan(int i)
{
    dfsnum[i]=low[i]=++dfsNum;
    st[top++]=i;
    instack[i]=1;
    int j=head[i];
    for(j=head[i];j!=-1;j=e[j].next)
    {
        int v=e[j].v;
        if(dfsnum[v]==0)//为树边
        {
            Tarjan(v);
            if(low[i]>low[v])
                low[i]=low[v];
        }
        else if(instack[v])
        {
            if(low[i]>dfsnum[v])
                low[i]=dfsnum[v];
        }
    }
    if(dfsnum[i]==low[i])
    {
        do
        {
            top--;
            sccnum[st[top]]=sccNum;//标记在第sccNum强连通分支中的点的标记为sccNum
            instack[st[top]]=0;
        }while(top>=0&&st[top]!=i);
        sccNum++;
    }
}
void solve(int n)
{
    int i;
    memset(dfsnum,0,sizeof(dfsnum));
    memset(instack,0,sizeof(instack));
    dfsNum=0;
    top=0;
    sccNum=0;
    for(i=1;i<=n;i++)
    {
        if(dfsnum[i]==0)
            Tarjan(i);
    }
}
int main()
{
    int n,m;
    int a,b,i;
    while(scanf("%d %d",&n,&m))
    {
        if(m==0&&n==0)
            break;
        memset(head,-1,sizeof(head));
        edgeNum=0;
        for(i=0;i<m;i++)
        {
            scanf("%d %d",&a,&b);
            insertEdge(a,b);
        }
        solve(n);
        if(sccNum==1)
            printf("Yes\n");
        else
            printf("No\n");
    }
    return 0;
}



你可能感兴趣的:(c,算法,struct,测试,Components)