/* 02.*Copyright (c) 2015,烟台大学计算机学院 03.*All rights reserved. 04.*文件名称:tu.cpp 05.*作者:孙钦达 06.*完成日期:2015年11月29日 07.*版本号:vc++6.0 08.* 09.*问题描述:图基本算法库 10.*输入描述:无 11.*程序输出: 数组的邻接矩阵和邻接表,邻接矩阵与邻接表的互换 12.*/
#ifndef HEAD_H_INCLUDED #define HEAD_H_INCLUDED #define MAXV 100 #define INF 32767 #include <malloc.h> #include <stdio.h> typedef int InfoType; //邻接矩阵 typedef struct { int no; InfoType info; }VertexType; typedef struct { int edges[MAXV][MAXV]; int n,e; VertexType vexs[MAXV]; }MGraph; //临接表 typedef struct ANode //弧的结点结构类型 { int adjvex; //该弧的终点位置 struct ANode *nextarc; //指向下一条弧的指针 InfoType info; //该弧的相关信息,这里用于存放权值 } ArcNode; typedef int Vertex; typedef struct Vnode //邻接表头结点的类型 { Vertex data; //顶点信息 int count; //存放顶点入度,只在拓扑排序中用 ArcNode *firstarc; //指向第一条弧 } VNode; typedef VNode AdjList[MAXV]; //AdjList是邻接表类型 typedef struct { AdjList adjlist; //邻接表 int n,e; //图中顶点数n和边数e } ALGraph; //图的邻接表类型 void ArrayToMat(int *Arr, int n, MGraph &g); //用普通数组构造图的邻接矩阵 void ArrayToList(int *Arr, int n, ALGraph *&); //用普通数组构造图的邻接表 void MatToList(MGraph g,ALGraph *&G);//将邻接矩阵g转换成邻接表G void ListToMat(ALGraph *G,MGraph &g);//将邻接表G转换成邻接矩阵g void DispMat(MGraph g);//输出邻接矩阵g void DispAdj(ALGraph *G);//输出邻接表G #endif // HEAD_H_INCLUDED
#include "head.h" int main() { MGraph g1,g2; ALGraph *G1,*G2; int A[6][6]= { {0,5,0,7,0,0}, {0,0,4,0,0,0}, {8,0,0,0,0,9}, {0,0,5,0,0,6}, {0,0,0,5,0,0}, {3,0,0,0,1,0} }; ArrayToMat(A[0], 6, g1); //取二维数组的起始地址作实参,用A[0],因其实质为一维数组地址,与形参匹配 printf(" 有向图g1的邻接矩阵:\n"); DispMat(g1); ArrayToList(A[0], 6, G1); printf(" 有向图G1的邻接表:\n"); DispAdj(G1); MatToList(g1,G2); printf(" 图g1的邻接矩阵转换成邻接表G2:\n"); DispAdj(G2); ListToMat(G1,g2); printf(" 图G1的邻接表转换成邻接邻阵g2:\n"); DispMat(g2); printf("\n"); return 0; }
#include "head.h" void ArrayToMat(int *Arr, int n, MGraph &g) { int i,j,count=0; //count用于统计边数,即矩阵中非0元素个数 g.n=n; for (i=0; i<g.n; i++) for (j=0; j<g.n; j++) { g.edges[i][j]=Arr[i*n+j]; //将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j],计算存储位置的功夫在此应用 if(g.edges[i][j]!=0 && g.edges[i][j]!=INF) count++; } g.e=count; } void ArrayToList(int *Arr, int n, ALGraph *&G) { int i,j,count=0; //count用于统计边数,即矩阵中非0元素个数 ArcNode *p; G=(ALGraph *)malloc(sizeof(ALGraph)); G->n=n; for (i=0; i<n; i++) //给邻接表中所有头节点的指针域置初值 G->adjlist[i].firstarc=NULL; for (i=0; i<n; i++) //检查邻接矩阵中每个元素 for (j=n-1; j>=0; j--) if (Arr[i*n+j]!=0) //存在一条边,将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j] { p=(ArcNode *)malloc(sizeof(ArcNode)); //创建一个节点*p p->adjvex=j; p->info=Arr[i*n+j]; p->nextarc=G->adjlist[i].firstarc; //采用头插法插入*p G->adjlist[i].firstarc=p; } G->e=count; } void MatToList(MGraph g, ALGraph *&G) //将邻接矩阵g转换成邻接表G { int i,j; ArcNode *p; G=(ALGraph *)malloc(sizeof(ALGraph)); for (i=0; i<g.n; i++) //给邻接表中所有头节点的指针域置初值 G->adjlist[i].firstarc=NULL; for (i=0; i<g.n; i++) //检查邻接矩阵中每个元素 for (j=g.n-1; j>=0; j--) if (g.edges[i][j]!=0) //存在一条边 { p=(ArcNode *)malloc(sizeof(ArcNode)); //创建一个节点*p p->adjvex=j; p->info=g.edges[i][j]; p->nextarc=G->adjlist[i].firstarc; //采用头插法插入*p G->adjlist[i].firstarc=p; } G->n=g.n; G->e=g.e; } void ListToMat(ALGraph *G,MGraph &g) //将邻接表G转换成邻接矩阵g { int i,j; ArcNode *p; g.n=G->n; //根据一楼同学“举报”改的。g.n未赋值,下面的初始化不起作用 g.e=G->e; for (i=0; i<g.n; i++) //先初始化邻接矩阵 for (j=0; j<g.n; j++) g.edges[i][j]=0; for (i=0; i<G->n; i++) //根据邻接表,为邻接矩阵赋值 { p=G->adjlist[i].firstarc; while (p!=NULL) { g.edges[i][p->adjvex]=p->info; p=p->nextarc; } } } void DispMat(MGraph g) //输出邻接矩阵g { int i,j; for (i=0; i<g.n; i++) { for (j=0; j<g.n; j++) if (g.edges[i][j]==INF) printf("%3s","∞"); else printf("%3d",g.edges[i][j]); printf("\n"); } } void DispAdj(ALGraph *G) //输出邻接表G { int i; ArcNode *p; for (i=0; i<G->n; i++) { p=G->adjlist[i].firstarc; printf("%3d: ",i); while (p!=NULL) { printf("-->%d/%d ",p->adjvex,p->info); p=p->nextarc; } printf("\n"); } }
运行结果:
知识点总结;
邻接矩阵转化成邻接表时,找到矩阵中不为0的元素并用头插法插入到头节点。而邻接表转化成邻接矩阵则时,判断邻接表中元素之间是否有边,若有边则在对应邻接矩阵中的值为1,否则为0.