gabor filter源代码:
%%%%%%%VERSION 2 %%ANOTHER DESCRIBTION OF GABOR FILTER %The Gabor filter is basically a Gaussian (with variances sx and sy along x and y-axes respectively) %modulated by a complex sinusoid (with centre frequencies U and V along x and y-axes respectively) %described by the following equation %% % -1 x' ^ y' ^ %%% G(x,y,theta,f) = exp ([----{(----) 2+(----) 2}])*cos(2*pi*f*x'); % 2 sx' sy' %%% x' = x*cos(theta)+y*sin(theta); %%% y' = y*cos(theta)-x*sin(theta); %% Describtion : %% I : Input image %% Sx & Sy : Variances along x and y-axes respectively %% f : The frequency of the sinusoidal function %% theta : The orientation of Gabor filter %% G : The output filter as described above %% gabout : The output filtered image %% Author : Ahmad poursaberi e-mail : [email protected] %% Faulty of Engineering, Electrical&Computer Department,Tehran %% University,Iran,June 2004 function [G,gabout] = gaborfilter1(I,Sx,Sy,f,theta) if isa(I,'double')~=1 I = double(I); end for x = -fix(Sx):fix(Sx) for y = -fix(Sy):fix(Sy) xPrime = x * cos(theta) + y * sin(theta); yPrime = y * cos(theta) - x * sin(theta); G(fix(Sx)+x+1,fix(Sy)+y+1) = exp(-.5*((xPrime/Sx)^2+(yPrime/Sy)^2))*cos(2*pi*f*xPrime); end end Imgabout = conv2(I,double(imag(G)),'same'); Regabout = conv2(I,double(real(G)),'same'); gabout = sqrt(Imgabout.*Imgabout + Regabout.*Regabout);
调用代码:
close all; clear all; clc; % 读入图像 image=imread('C:\Users\watkins\Pictures\cartoon.jpg'); grayImage=rgb2gray(image); grayImage=im2double(grayImage); % 显示读入图像 imshow(grayImage); sx=32; sy=32; theta=[0 pi/4 2*pi/4 3*pi/4 4*pi/4 5*pi/4 6*pi/4 7*pi/4]; gamma=1; psi=0; sigma=6; % 也可以为12 lambda=[5 6 7 8 9]; V=[4 5 6 7 8]; U=[0 pi/4 2*pi/4 3*pi/4 4*pi/4 5*pi/4 6*pi/4 7*pi]; %U=[1 2 3 4 5 6 7 8]; % Creating 40 Gabor Filters G = cell(5,8); for i = 1:5 for j = 1:8 G{i,j}=zeros(65,65); end end for i = 1:5 for j = 1:8 f=1/lambda(i); %[T,gabout] = gaborfilter(grayImage,sx,sy,U(j),V(i)); %G{i,j} = T; G{i,j} = gaborfilter1(grayImage,sx,sy,f,theta(j)); end end % Showing Gabor Filters figure; for s = 1:5 for j = 1:8 subplot(5,8,(s-1)*8+j); %imshow(real(G{s,j})/2-0.5,[]); imshow(real(G{s,j}),[]); end end
显示的滤波器组图片:
可以明显看到波长和方向的变化