Android Framework的音频子系统中,每一个音频流对应着一个AudioTrack类的一个实例,每个AudioTrack会在创建时注册到AudioFlinger中,由AudioFlinger把所有的AudioTrack进行混合(Mixer),然后输送到AudioHardware中进行播放,目前Android的Froyo版本设定了同时最多可以创建32个音频流,也就是说,Mixer最多会同时处理32个AudioTrack的数据流。
AudioTrack的主要代码位于 frameworks/base/media/libmedia/audiotrack.cpp中。现在先通过一个例子来了解一下如何使用AudioTrack,ToneGenerator是android中产生电话拨号音和其他音调波形的一个实现,我们就以它为例子:
ToneGenerator的初始化函数:
bool ToneGenerator::initAudioTrack() {可见,创建步骤很简单,先new一个AudioTrack的实例,然后调用set成员函数完成参数的设置并注册到AudioFlinger中,然后可以调用其他诸如设置音量等函数进一步设置音频参数。其中,一个重要的参数是audioCallback,audioCallback是一个回调函数,负责响应AudioTrack的通知,例如填充数据、循环播放、播放位置触发等等。回调函数的写法通常像这样:
void ToneGenerator::audioCallback(int event, void* user, void *info) {
if (event != AudioTrack::EVENT_MORE_DATA) return;
AudioTrack::Buffer *buffer = static_cast<AudioTrack::Buffer *>(info);
ToneGenerator *lpToneGen = static_cast<ToneGenerator *>(user);
short *lpOut = buffer->i16;
unsigned int lNumSmp = buffer->size/sizeof(short);
const ToneDescriptor *lpToneDesc = lpToneGen->mpToneDesc;
if (buffer->size == 0) return;
// Clear output buffer: WaveGenerator accumulates into lpOut buffer
memset(lpOut, 0, buffer->size);
......
// 以下是产生音调数据的代码,略....
}
该函数首先判断事件的类型是否是EVENT_MORE_DATA,如果是,则后续的代码会填充相应的音频数据后返回,当然你可以处理其他事件,以下是可用的事件类型:
enum event_type {
EVENT_MORE_DATA = 0, // Request to write more data to PCM buffer.
EVENT_UNDERRUN = 1, // PCM buffer underrun occured.
EVENT_LOOP_END = 2, // Sample loop end was reached; playback restarted from loop start if loop count was not 0.
EVENT_MARKER = 3, // Playback head is at the specified marker position (See setMarkerPosition()).
EVENT_NEW_POS = 4, // Playback head is at a new position (See setPositionUpdatePeriod()).
EVENT_BUFFER_END = 5 // Playback head is at the end of the buffer.
};
开始播放:mpAudioTrack->start();
停止播放:mpAudioTrack->stop();
只要简单地调用成员函数start()和stop()即可。
通常,AudioTrack和AudioFlinger并不在同一个进程中,它们通过android中的binder机制建立联系。
AudioFlinger是android中的一个service,在android启动时就已经被加载。下面这张图展示了他们两个的关系:
我们可以这样理解这张图的含义:
下面的序列图展示了AudioTrack和AudioFlinger建立联系的过程:
解释一下过程:
自此,AudioTrack建立了和AudioFlinger的全部联系工作,接下来,AudioTrack可以:
audio_track_cblk_t这个结构是FIFO实现的关键,该结构是在createTrack的时候,由AudioFlinger申请相应的内存,然后通过IMemory接口返回AudioTrack的,这样AudioTrack和AudioFlinger管理着同一个audio_track_cblk_t,通过它实现了环形FIFO,AudioTrack向FIFO中写入音频数据,AudioFlinger从FIFO中读取音频数据,经Mixer后送给AudioHardware进行播放。
audio_track_cblk_t的主要数据成员:
user -- AudioTrack当前的写位置的偏移
userBase -- AudioTrack写偏移的基准位置,结合user的值方可确定真实的FIFO地址指针
server -- AudioFlinger当前的读位置的偏移
serverBase -- AudioFlinger读偏移的基准位置,结合server的值方可确定真实的FIFO地址指针
frameCount -- FIFO的大小,以音频数据的帧为单位,16bit的音频每帧的大小是2字节
buffers -- 指向FIFO的起始地址
out -- 音频流的方向,对于AudioTrack,out=1,对于AudioRecord,out=0
audio_track_cblk_t的主要成员函数:
framesAvailable_l()和framesAvailable()用于获取FIFO中可写的空闲空间的大小,只是加锁和不加锁的区别。
framesReady()用于获取FIFO中可读取的空间大小。
uint32_t audio_track_cblk_t::framesReady()
{
uint32_t u = this->user;
uint32_t s = this->server;
if (out) {
if (u < loopEnd) {
return u - s;
} else {
Mutex::Autolock _l(lock);
if (loopCount >= 0) {
return (loopEnd - loopStart)*loopCount + u - s;
} else {
return UINT_MAX;
}
}
} else {
return s - u;
}
}
我们看看下面的示意图:
_____________________________________________
^ ^ ^ ^
buffer_start server(s) user(u) buffer_end
很明显,frameReady = u - s,frameAvalible = frameCount - frameReady = frameCount - u + s
可能有人会问,应为这是一个环形的buffer,一旦user越过了buffer_end以后,应该会发生下面的情况:
_____________________________________________
^ ^ ^ ^
buffer_start user(u) server(s) buffer_end
这时候u在s的前面,用上面的公式计算就会错误,但是android使用了一些技巧,保证了上述公式一直成立。我们先看完下面三个函数的代码再分析:
uint32_t audio_track_cblk_t::stepUser(uint32_t frameCount)
{
uint32_t u = this->user;
u += frameCount;
......
if (u >= userBase + this->frameCount) {
userBase += this->frameCount;
}
this->user = u;
......
return u;
}
bool audio_track_cblk_t::stepServer(uint32_t frameCount)
{
// the code below simulates lock-with-timeout
// we MUST do this to protect the AudioFlinger server
// as this lock is shared with the client.
status_t err;
err = lock.tryLock();
if (err == -EBUSY) { // just wait a bit
usleep(1000);
err = lock.tryLock();
}
if (err != NO_ERROR) {
// probably, the client just died.
return false;
}
uint32_t s = this->server;
s += frameCount;
// 省略部分代码
// ......
if (s >= serverBase + this->frameCount) {
serverBase += this->frameCount;
}
this->server = s;
cv.signal();
lock.unlock();
return true;
}
void* audio_track_cblk_t::buffer(uint32_t offset) const
{
return (int8_t *)this->buffers + (offset - userBase) * this->frameSize;
}
stepUser()和stepServer的作用是调整当前偏移的位置,可以看到,他们仅仅是把成员变量user或server的值加上需要移动的数量,user和server的值并不考虑FIFO的边界问题,随着数据的不停写入和读出,user和server的值不断增加,只要处理得当,user总是出现在server的后面,因此frameAvalible()和frameReady()中的算法才会一直成立。根据这种算法,user和server的值都可能大于FIFO的大小:framCount,那么,如何确定真正的写指针的位置呢?这里需要用到userBase这一成员变量,在stepUser()中,每当user的值越过(userBase+frameCount),userBase就会增加frameCount,这样,映射到FIFO中的偏移总是可以通过(user-userBase)获得。因此,获得当前FIFO的写地址指针可以通过成员函数buffer()返回:
p = mClbk->buffer(mclbk->user);
在AudioTrack中,封装了两个函数:obtainBuffer()和releaseBuffer()操作FIFO,obtainBuffer()获得当前可写的数量和写指针的位置,releaseBuffer()则在写入数据后被调用,它其实就是简单地调用stepUser()来调整偏移的位置。
在createTrack的过程中,AudioFlinger会根据传入的frameCount参数,申请一块内存,AudioTrack可以通过IAudioTrack接口的getCblk()函数获得指向该内存块的IMemory接口,然后AudioTrack通过该IMemory接口的pointer()函数获得指向该内存块的指针,这块内存的开始部分就是audio_track_cblk_t结构,紧接着是大小为frameSize的FIFO内存。
IMemory->pointer() ---->|_______________________________________________________
|__audio_track_cblk_t__|_______buffer of FIFO(size==frameCount)____|
看看AudioTrack的createTrack()的代码就明白了:
sp<IAudioTrack> track = audioFlinger->createTrack(getpid(),