#翻译#了下 余凯老师的 心法
以前的一篇博文:二分类SVM方法Matlab实现
前几日实现了下,虽然说是Linear-SVM,但是只要可以有映射函数也可以做kernel-svm
function [optW cost]= svm5step(X, y, lambda) %% Linear-SVM Minimize(Cost + lambda*Penalty) % X: N×dim % y: {-1,+1} % lambda: coefficient for Penalty part % By LiFeiteng Email:[email protected] [N dim] = size(X); w = rand(dim+1,1); X = [ones(N,1) X]; % x = [1 x] % minFunc From: http://www.di.ens.fr/~mschmidt/Software/minFunc.html options.Method = 'lbfgs'; options.maxIter = 100; options.display = 'on'; [optW, cost] = minFunc( @(p) svmCost(p, X, y, lambda), w, options); end function [cost grad] = svmCost(w, X, y, lambda) % cost = HingeLoss^2 + lambda*||w||^2 % 1 2 3 4 5 step yp = X*w; idx = find(yp.*y<1); err = yp(idx)-y(idx); cost = err'*err + lambda*w'*w; grad = 2*X(idx,:)'*err + 2*lambda*w; end
测试用例:
clear close all x0 = [1 4]'; x1 = [4 1]'; X0 = []; X1 = []; for i = 1:40 X0 = [X0 normrnd(x0, 1)]; X1 = [X1 normrnd(x1, 1)]; end X = [X0 X1]'; y = [-ones(size(X0,2),1); ones(size(X1,2),1)]; save data X0 X1 X y plot(X0(1,:),X0(2,:), 'ko', 'MarkerFaceColor', 'y', 'MarkerSize', 7); hold on plot(X1(1,:),X1(2,:), 'k+','LineWidth', 2, 'MarkerSize', 7); lambda = 0.01; w = svm5step(X, y, lambda) k = -w(2)/w(3); b = -w(1)/w(3); h = refline(k,b); %已知斜率w 截距b 画直线 set(h, 'Color', 'r') b = -(w(1)+1)/w(3); h = refline(k,b); %已知斜率w 截距b 画直线 b = -(w(1)-1)/w(3); h = refline(k,b); %已知斜率w 截距b 画直线 title(['5 steps Linear-SVM: \lambda = ' num2str(lambda)] )