双边滤波与一般的高斯滤波的不同就是:双边滤波既利用了位置信息<or 几何信息——高斯滤波只用了位置信息>又利用了像素信息来定义滤波窗口的权重。
像素值越接近,权重越大。双边滤波会去除图像的细节信息,又能保持边界。
对于彩色图像,像素值的接近与否不能使用RGB空间值,双边滤波的原始文献建议使用CIE颜色空间。
代码如下:
function resultI = BilateralFilt2(I,d,sigma) %%% %Author:LiFeiteng %Version:1.0——灰色图像 Time:2013/05/01 %Version:1.1——灰色/彩色图像 Time:2013/05/02 2013/05/05 %d 半窗口宽度 I = double(I); if size(I,3)==1 resultI = BilateralFiltGray(I,d,sigma); elseif size(I,3)==3 resultI = BilateralFiltColor(I,d,sigma); else error('Incorrect image size') end end function resultI = BilateralFiltGray(I,d,sigma) [m n] = size(I); newI = ReflectEdge(I,d); resultI = zeros(m,n); width = 2*d+1; %Distance D = fspecial('gaussian',[width,width],sigma(1)); S = zeros(width,width);%pix Similarity h = waitbar(0,'Applying bilateral filter...'); set(h,'Name','Bilateral Filter Progress'); for i=1+d:m+d for j=1+d:n+d pixValue = newI(i-d:i+d,j-d:j+d); subValue = pixValue-newI(i,j); S = exp(-subValue.^2/(2*sigma(2)^2)); H = S.*D; resultI(i-d,j-d) = sum(pixValue(:).*H(:))/sum(H(:)); end waitbar(i/m); end close(h); end function resultI = BilateralFiltColor(I,d,sigma) I = applycform(I,makecform('srgb2lab')); [m n ~] = size(I); newI = ReflectEdge(I,d); resultI = zeros(m,n,3); width = 2*d+1; %Distance D = fspecial('gaussian',[width,width],sigma(1)); % [X,Y] = meshgrid(-d:d,-d:d); % D = exp(-(X.^2+Y.^2)/(2*sigma(1)^2)); S = zeros(width,width);%pix Similarity h = waitbar(0,'Applying bilateral filter...'); set(h,'Name','Bilateral Filter Progress'); sigma_r = 100*sigma(2); for i=1+d:m+d for j=1+d:n+d pixValue = newI(i-d:i+d,j-d:j+d,1:3); %subValue = pixValue-repmat(newI(i,j,1:3),width,width); dL = pixValue(:,:,1)-newI(i,j,1); da = pixValue(:,:,2)-newI(i,j,2); db = pixValue(:,:,3)-newI(i,j,3); S = exp(-(dL.^2+da.^2+db.^2)/(2*sigma_r^2)); H = S.*D; H = H./sum(H(:)); resultI(i-d,j-d,1) = sum(sum(pixValue(:,:,1).*H)); resultI(i-d,j-d,2) = sum(sum(pixValue(:,:,2).*H)); resultI(i-d,j-d,3) = sum(sum(pixValue(:,:,3).*H)); end waitbar(i/m); end close(h); resultI = applycform(resultI,makecform('lab2srgb')); end
function newI = ReflectEdge(I,d) %Version:1.0——灰色图像 Time:2013/05/01 %Version:1.1——灰色/彩色图像 Time:2013/05/02 %考虑到实用性,决定不添加更多的边界处理选择,统一使用:reflect across edge if size(I,3)==1 newI = ReflectEdgeGray(I,d); elseif size(I,3)==3 newI = ReflectEdgeColor(I,d); else error('Incorrect image size') end end function newI = ReflectEdgeGray(I,d) [m n] = size(I); newI = zeros(m+2*d,n+2*d); %中间部分 newI(d+1:d+m,d+1:d+n) = I; %上 newI(1:d,d+1:d+n) = I(d:-1:1,:); %下 newI(end-d:end,d+1:d+n) = I(end:-1:end-d,:); %左 newI(:,1:d) = newI(:,2*d:-1:d+1); %右 newI(:,m+d+1:m+2*d) = newI(:,m+d:-1:m+1); end function newI = ReflectEdgeColor(I,d) %扩展图像边界 [m n ~] = size(I); newI = zeros(m+2*d,n+2*d,3); %中间部分 newI(d+1:d+m,d+1:d+n,1:3) = I; %上 newI(1:d,d+1:d+n,1:3) = I(d:-1:1,:,1:3); %下 newI(end-d:end,d+1:d+n,1:3) = I(end:-1:end-d,:,1:3); %左 newI(:,1:d,1:3) = newI(:,2*d:-1:d+1,1:3); %右 newI(:,m+d+1:m+2*d,1:3) = newI(:,m+d:-1:m+1,1:3); end
img = imread('.\lena.tif'); %%img = imread('.\images\lena_gray.tif'); img = double(img)/255; img = img+0.05*randn(size(img)); img(img<0) = 0; img(img>1) = 1; %img = imnoise(img,'gaussian'); figure, imshow(img,[]) title('原始图像') d = 6; sigma = [3 0.1]; resultI = BilateralFilt2(double(img), d, sigma); figure, imshow(resultI,[]) title('双边滤波后的图像')
结果:
Reference:
1.C Tomasi, R Manduchi.Bilateral Filtering for Gray and Color Images, - Computer Vision, 1998.