java二叉树遍历

 

前序遍历(DLR)

  前序遍历也叫做先根遍历,可记做根左右。

  前序遍历首先访问根结点然后遍历左子树,最后遍历右子树。在遍历左、右子树时,仍然先访问根结点,然后遍历左子树,最后遍历右子树。

  若二叉树为空则结束返回,否则:

  (1)访问根结点.  (2)前序遍历左子树.

  

  (3)前序遍历右子树 .  注意的是:遍历左右子树时仍然采用前序遍历方法。

  

  如上图所示二叉树

  前序遍历,也叫先根遍历,遍历的顺序是,根,左子树,右子树

  遍历结果:ABDECF

  中序遍历,也叫中根遍历,顺序是 左子树,根,右子树

  遍历结果:DBEAFC

  后序遍历,也叫后根遍历,遍历顺序,左子树,右子树,根

  遍历结果:DEBFCA

 

import java.util.Stack;

/** 二叉树节点 */
class BTNode {
 private char key;
 private BTNode left, right;

 public BTNode(char key) {
  this(key, null, null);
 }

 public BTNode(char key, BTNode left, BTNode right) {
  this.key = key;
  this.left = left;
  this.right = right;
 }

 public char getKey() {
  return key;
 }

 public void setKey(char key) {
  this.key = key;
 }

 public BTNode getLeft() {
  return left;
 }

 public void setLeft(BTNode left) {
  this.left = left;
 }

 public BTNode getRight() {
  return right;
 }

 public void setRight(BTNode right) {
  this.right = right;
 }
}

/** 二叉树遍历 */
public class BinTree {
 protected BTNode root;

 public BinTree(BTNode root) {
  this.root = root;
 }

 public BTNode getRoot() {
  return root;
 }

 /** 构造树 */
 public static BTNode init() {
  BTNode a = new BTNode('A');
  BTNode b = new BTNode('B', null, a);
  BTNode c = new BTNode('C');
  BTNode d = new BTNode('D', b, c);
  BTNode e = new BTNode('E');
  BTNode f = new BTNode('F', e, null);
  BTNode g = new BTNode('G', null, f);
  BTNode h = new BTNode('H', d, g);
  return h;// root
 }

 /** 访问节点 */
 public static void visit(BTNode p) {
  System.out.print(p.getKey() + " ");
 }

 /** 递归实现前序遍历 */
 protected static void preorder(BTNode p) {
  if (p != null) {
   visit(p);
   preorder(p.getLeft());
   preorder(p.getRight());
  }
 }

 /** 递归实现中序遍历 */
 protected static void inorder(BTNode p) {
  if (p != null) {
   inorder(p.getLeft());
   visit(p);
   inorder(p.getRight());
  }
 }

 /** 递归实现后序遍历 */
 protected static void postorder(BTNode p) {
  if (p != null) {
   postorder(p.getLeft());
   postorder(p.getRight());
   visit(p);
  }
 }

 /** 非递归实现前序遍历 */
 protected static void iterativePreorder(BTNode p) {
  Stack<BTNode> stack = new Stack<BTNode>();
  if (p != null) {
   stack.push(p);
   while (!stack.empty()) {
    p = stack.pop();
    visit(p);
    if (p.getRight() != null)
     stack.push(p.getRight());
    if (p.getLeft() != null)
     stack.push(p.getLeft());
   }
  }
 }

 /** 非递归实现后序遍历 */
 protected static void iterativePostorder(BTNode p) {
  BTNode q = p;
  Stack<BTNode> stack = new Stack<BTNode>();
  while (p != null) {
   // 左子树入栈
   for (; p.getLeft() != null; p = p.getLeft())
    stack.push(p);
   // 当前节点无右子或右子已经输出
   while (p != null && (p.getRight() == null || p.getRight() == q)) {
    visit(p);
    q = p;// 记录上一个已输出节点
    if (stack.empty())
     return;
    p = stack.pop();
   }
   // 处理右子
   stack.push(p);
   p = p.getRight();
  }
 }

 /** 非递归实现中序遍历 */
 protected static void iterativeInorder(BTNode p) {
  Stack<BTNode> stack = new Stack<BTNode>();
  while (p != null) {
   while (p != null) {
    if (p.getRight() != null)
     stack.push(p.getRight());// 当前节点右子入栈
    stack.push(p);// 当前节点入栈
    p = p.getLeft();
   }
   p = stack.pop();
   while (!stack.empty() && p.getRight() == null) {
    visit(p);
    p = stack.pop();
   }
   visit(p);
   if (!stack.empty())
    p = stack.pop();
   else
    p = null;
  }
 }

 public static void main(String[] args) {
  BinTree tree = new BinTree(init());
  System.out.print(" Pre-Order:");
  preorder(tree.getRoot());
  System.out.println();
  System.out.print(" In-Order:");
  inorder(tree.getRoot());
  System.out.println();
  System.out.print("Post-Order:");
  postorder(tree.getRoot());
  System.out.println();
  System.out.print(" Pre-Order:");
  iterativePreorder(tree.getRoot());
  System.out.println();
  System.out.print(" In-Order:");
  iterativeInorder(tree.getRoot());
  System.out.println();
  System.out.print("Post-Order:");
  iterativePostorder(tree.getRoot());
  System.out.println();
 }
}

你可能感兴趣的:(java二叉树遍历)