20世纪十大算法

本世纪初,美国物理学会(American Institute of Physics)和IEEE计算机社团 (IEEE Computer Society)的一本联合刊物《科学与工程中的计算》发表了由田纳西大学的Jack Dongarra和橡树岭国家实验室的Francis Sullivan 联名撰写的“世纪十大算法”一文,该文“试图整理出在20世纪对科学和工程领域的发展产生最大影响力的十大算法”。作者苦于“任何选择都将是充满争议的,因为实在是没有最好的算法”,他们只好用编年顺序依次列出了这十项算法领域人类智慧的巅峰之作――给出了一份没有排名的算法排行榜。有趣的是,该期杂志还专门邀请了这些算法相关领域的“大拿”为这十大算法撰写十篇综述文章,实在是蔚为壮观。本文的目的,便是要带领读者走马观花,一同回顾当年这一算法界的盛举。 

1946 蒙特卡洛方法 

在广场上画一个边长一米的正方形,在正方形内部随意用粉笔画一个不规则的形状,呃,能帮我算算这个不规则图形的面积么?蒙特卡洛(Monte Carlo)方法便是解决这个问题的巧妙方法:随机向该正方形内扔N(N 是一个很大的自然数)个黄豆,随后数数有多少个黄豆在这个不规则几何形状内部,比如说有M个:那么,这个奇怪形状的面积便近似于M/N,N越大,算出来的值便越精确。别小看这个数黄豆的笨办法,大到国家的民意测验,小到中子的移动轨迹,从金融市场的风险分析,到军事演习的沙盘推演,蒙特卡洛方法无处不在背后发挥着它的神奇威力。 

蒙特卡洛方法由美国拉斯阿莫斯国家实验室的三位科学家John von Neumann(看清楚了,这位可是冯诺伊曼同志!),Stan Ulam 和 Nick Metropolis共同发明。就其本质而言,蒙特卡洛方法是用类似于物理实验的近似方法求解问题,它的魔力在于,对于那些规模极大的问题,求解难度随着问题的维数(自变量个数)的增加呈指数级别增长,出现所谓的“维数的灾难”(Course of Dimensionality)。对此,传统方法无能为力,而蒙特卡洛方法却可以独辟蹊径,基于随机仿真的过程给出近似的结果。 

最后八卦一下,Monte Carlo这个名字是怎么来的?它是摩纳哥的一座以博彩业闻名的城市,赌博其实是门概率的高深学问,不是么? 

1947 单纯形法 

单纯形法是由大名鼎鼎的“预测未来”的兰德公司的Grorge Dantzig发明的,它成为线性规划学科的重要基石。所谓线性规划,简单的说,就是给定一组线性(所有变量都是一次幂)约束条件(例如a1*x1+ b1*x2+c1*x3>0),求一个给定的目标函数的极值。这么说似乎也太太太抽象了,但在现实中能派上用场的例子可不罕见――比如对于一个公司而言,其能够投入生产的人力物力有限(“线性约束条件”),而公司的目标是利润最大化(“目标函数取最大值”),看,线性规划并不抽象吧!线性规划作为运筹学(operation research)的一部分,成为管理科学领域的一种重要工具。而Dantzig提出的单纯形法便是求解类似线性规划问题的一个极其有效的方法,说来惭愧,本科二年级的时候笔者也学过一学期的运筹学,现在脑子里能想起的居然只剩下单纯形法了――不过这不也正说明了该方法的简单和直观么? 

顺便说句题外话,写过《万历十五年》的黄仁宇曾说中国的传统是“不能从数目字上管理”,我们习惯于“拍脑袋”,而不是基于严格的数据做决定,也许改变这一传统的方法之一就是全民动员学习线性规划喔。 

1950 Krylov子空间迭代法 
1951 矩阵计算的分解方法 

50年代初的这两个算法都是关于线性代数中的矩阵计算的,看到数学就头大的读者恐怕看到算法的名字已经开始皱眉毛了。Krylov子空间叠代法是用来求解形如Ax=b 的方程,A是一个n*n 的矩阵,当n充分大时,直接计算变得非常困难,而Krylov方法则巧妙地将其变为Kxi+1=Kxi+b-Axi的迭代形式来求解。这里的K(来源于作者俄国人Nikolai Krylov姓氏的首字母)是一个构造出来的接近于A的矩阵,而迭代形式的算法的妙处在于,它将复杂问题化简为阶段性的易于计算的子步骤。 

1951年由橡树岭国家实验室的AlstonHouseholder提出的矩阵计算的分解方法,则证明了任何矩阵都可以分解为三角、对角、正交和其他特殊形式的矩阵,该算法的意义使得开发灵活的矩阵计算软件包成为可能。 

1957 优化的Fortran编译器 

说实话,在这份学术气息无比浓郁的榜单里突然冒出一个编译器(Compiler)如此工程化的东东实在让人有“关公战秦琼”的感觉。不过换个角度想想,Fortran这一门几乎为科学计算度身定制的编程语言对于科学家(尤其是数学家,物理学家)们实在是太重要了,简直是他们形影不离的一把瑞士军刀,这也难怪他们纷纷抢着要把票投给了它。要知道,Fortran是第一种能将数学公式转化为计算机程序的高级语言,它的诞生使得科学家们真正开始利用计算机作为计算工具为他们的研究服务,这是计算机应用技术的一个里程碑级别的贡献。 

话说回来,当年这帮开发Fortran的家伙真是天才――只用23500行汇编指令就完成了一个Fortran编译器,而且其效率之高令人叹为观止:当年在IBM 主持这一项目的负责人JohnBackus在数十年后,回首这段往事的时候也感慨,说它生成代码的效率“出乎了所有开发者的想象”。看来作为程序员,自己写的程序跑起来“出乎自己的想象”,有时候还真不一定是件坏事! 

1959-61 计算矩阵特征值的QR算法 

呼,又是一个和线性代数有关的算法,学过线性代数的应该还记得“矩阵的特征值”吧?计算特征值是矩阵计算的最核心内容之一,传统的求解方案涉及到高次方程求根,当问题规模大的时候十分困难。QR算法把矩阵分解成一个正交矩阵(什么是正交矩阵?!还是赶紧去翻书吧!)与一个上三角矩阵的积,和前面提到的 Krylov 方法类似,这又是一个迭代算法,它把复杂的高次方程求根问题化简为阶段性的易于计算的子步骤,使得用计算机求解大规模矩阵特征值成为可能。这个算法的作者是来自英国伦敦的J.G.F. Francis。 

1962 快速排序算法 

不少读者恐怕和我一样,看到“快速排序算法”(Quick Sort)这个条目时,心里的感觉是――“这可总算找到组织了”。相比于其他一些对程序员而言高深莫测的数学物理公式,快速排序算法真是我们朝夕相处的好伙伴――老板让你写个排序算法,如果你写出来的不是快速排序,你都不好意思跟同事打招呼。其实根本不用自己动手实现, 不论是ANSI C,C++ STL,还是Java SDK,天下几乎所有的SDK里都能找到它的某种实现版本。 

快速排序算法最早由Tony Hoare爵士设计,它的基本思想是将待排序列分为两半,左边的一半总是“小的”,右边的一半总是“大的”,这一过程不断递归持续下去,直到整个序列有序。说起这位Tony Hoare爵士,快速排序算法其实只是他不经意间的小小发现而已,他对于计算机贡献主要包括形式化方法理论,以及ALGOL60 编程语言的发明等,他也因这些成就获得1980 年图灵奖。 

快速排序的平均时间复杂度仅仅为O(Nlog(N)),相比于普通选择排序和冒泡排序等而言,实在是历史性的创举。 

1965 快速傅立叶变换 

如果要评选对我们的日常生活影响最大的算法,快速傅立叶变换算法应该是当仁不让的总冠军――每天当拿起话筒,打开手机,听mp3,看DVD,用DC拍照 ――毫不夸张的说,哪里有数字信号处理,哪里就有快速傅立叶变换。快速傅立叶算法是离散傅立叶算法(这可是数字信号处理的基石)的一种快速算法,它有 IBM 华生研究院的James Cooley和普林斯顿大学的John Tukey共同提出,其时间复杂度仅为O(Nlog(N));比时间效率更为重要的是,快速傅立叶算法非常容易用硬件实现,因此它在电子技术领域得到极其广泛的应用。 

1977 整数关系探测算法 

整数关系探测是个古老的问题,其历史甚至可以追溯到欧几里德的时代。具体的说: 

给定―组实数X1,X2,...,Xn,是否存在不全为零的整数a1,a2,...an,使得:a 1 x 1 +a 2 x 2 + . . . + a n x n = 0 这一年BrighamYoung大学的Helaman Ferguson 和Rodney Forcade解决了这一问题。至于这个算法的意义嘛,呃,该算法应用于“简化量子场论中的Feynman图的计算”――太深奥的学问拉! 

1987 快速多极算法 

日历翻到了1987 年,这一年的算法似乎更加玄奥了,耶鲁大学的Leslie Greengard和Vladimir Rokhlin提出的快速多极算法用来计算“经由引力或静电力相互作用的N 个粒子运动的精确计算――例如银河系中的星体,或者蛋白质中的原子间的相互作用”,天哪,不是我不明白,这世界真是变得快! 

所谓浪花淘尽英雄,这些算法的发明者许多已经驾鹤西去。二十一世纪的头五年也已经在不知不觉中从我们指尖滑过,不知下一次十大算法评选的盛事何时再有,也许我们那时已经垂垂老去,也许我们早已不在人世,只是心中唯一的希望――里面该有个中国人的名字吧!

你可能感兴趣的:(20世纪十大算法)