一致性hash算法(consistent hash)

java实现:http://www.oschina.net/code/snippet_730640_22941

参考:http://amix.dk/blog/post/19367

python实现:

import md5

class HashRing(object):

    def __init__(self, nodes=None, replicas=3):
        """Manages a hash ring.

        `nodes` is a list of objects that have a proper __str__ representation.
        `replicas` indicates how many virtual points should be used pr. node,
        replicas are required to improve the distribution.
        """
        self.replicas = replicas

        self.ring = dict()
        self._sorted_keys = []

        if nodes:
            for node in nodes:
                self.add_node(node)

    def add_node(self, node):
        """Adds a `node` to the hash ring (including a number of replicas).
        """
        for i in xrange(0, self.replicas):
            key = self.gen_key('%s:%s' % (node, i))
            self.ring[key] = node
            self._sorted_keys.append(key)

        self._sorted_keys.sort()

    def remove_node(self, node):
        """Removes `node` from the hash ring and its replicas.
        """
        for i in xrange(0, self.replicas):
            key = self.gen_key('%s:%s' % (node, i))
            del self.ring[key]
            self._sorted_keys.remove(key)

    def get_node(self, string_key):
        """Given a string key a corresponding node in the hash ring is returned.

        If the hash ring is empty, `None` is returned.
        """
        return self.get_node_pos(string_key)[0]

    def get_node_pos(self, string_key):
        """Given a string key a corresponding node in the hash ring is returned
        along with it's position in the ring.

        If the hash ring is empty, (`None`, `None`) is returned.
        """
        if not self.ring:
            return None, None

        key = self.gen_key(string_key)

        nodes = self._sorted_keys
        for i in xrange(0, len(nodes)):
            node = nodes[i]
            if key <= node:
                return self.ring[node], i

        return self.ring[nodes[0]], 0

    def get_nodes(self, string_key):
        """Given a string key it returns the nodes as a generator that can hold the key.

        The generator is never ending and iterates through the ring
        starting at the correct position.
        """
        if not self.ring:
            yield None, None

        node, pos = self.get_node_pos(string_key)
        for key in self._sorted_keys[pos:]:
            yield self.ring[key]

        while True:
            for key in self._sorted_keys:
                yield self.ring[key]

    def gen_key(self, key):
        """Given a string key it returns a long value,
        this long value represents a place on the hash ring.

        md5 is currently used because it mixes well.
        """
        m = md5.new()
        m.update(key)
        return long(m.hexdigest(), 16)
    

memcache_servers = ['192.168.1.1:11212','192.168.1.2:11212']

ring = HashRing(memcache_servers)
server = ring.get_node('my_key')

print server    

 java实现:

package util;

import java.util.Arrays;
import java.util.Collection;
import java.util.SortedMap;
import java.util.TreeMap;

/**
 * 一致性Hash算法
 * 算法详解:http://blog.csdn.net/sparkliang/article/details/5279393
 * 算法实现:https://weblogs.java.net/blog/2007/11/27/consistent-hashing
 * @author xiaoleilu
 *
 * @param <T>	节点类型
 */
public class ConsistentHash<T> {
	/** Hash计算对象,用于自定义hash算法 */
	HashFunc hashFunc;
	/** 复制的节点个数 */
	private final int numberOfReplicas;
	/** 一致性Hash环 */
	private final SortedMap<Integer, T> circle = new TreeMap<Integer, T>();

	/**
	 * 构造,使用Java默认的Hash算法
	 * @param numberOfReplicas 复制的节点个数,增加每个节点的复制节点有利于负载均衡
	 * @param nodes 节点对象
	 */
	public ConsistentHash(int numberOfReplicas, Collection<T> nodes) {
		this.numberOfReplicas = numberOfReplicas;
		this.hashFunc = new HashFunc() {

			@Override
			public Integer hash(Object key) {
				String data = key.toString();
				//默认使用FNV1hash算法
				final int p = 16777619;
				int hash = (int) 2166136261L;
				for (int i = 0; i < data.length(); i++)
					hash = (hash ^ data.charAt(i)) * p;
				hash += hash << 13;
				hash ^= hash >> 7;
				hash += hash << 3;
				hash ^= hash >> 17;
				hash += hash << 5;
				return hash;
			}
		};
		//初始化节点
		for (T node : nodes) {
			add(node);
		}
	}

	/**
	 * 构造
	 * @param hashFunc hash算法对象
	 * @param numberOfReplicas 复制的节点个数,增加每个节点的复制节点有利于负载均衡
	 * @param nodes 节点对象
	 */
	public ConsistentHash(HashFunc hashFunc, int numberOfReplicas, Collection<T> nodes) {
		this.numberOfReplicas = numberOfReplicas;
		this.hashFunc = hashFunc;
		//初始化节点
		for (T node : nodes) {
			add(node);
		}
	}

	/**
	 * 增加节点<br>
	 * 每增加一个节点,就会在闭环上增加给定复制节点数<br>
	 * 例如复制节点数是2,则每调用此方法一次,增加两个虚拟节点,这两个节点指向同一Node
	 * 由于hash算法会调用node的toString方法,故按照toString去重
	 * @param node 节点对象
	 */
	public void add(T node) {
		for (int i = 0; i < numberOfReplicas; i++) {
			circle.put(hashFunc.hash(node.toString() + i), node);
		}
	}

	/**
	 * 移除节点的同时移除相应的虚拟节点
	 * @param node 节点对象
	 */
	public void remove(T node) {
		for (int i = 0; i < numberOfReplicas; i++) {
			circle.remove(hashFunc.hash(node.toString() + i));
		}
	}

	/**
	 * 获得一个最近的顺时针节点
	 * @param key 为给定键取Hash,取得顺时针方向上最近的一个虚拟节点对应的实际节点
	 * @return 节点对象
	 */
	public T get(Object key) {
		if (circle.isEmpty()) {
			return null;
		}
		int hash = hashFunc.hash(key);
		if (!circle.containsKey(hash)) {
			SortedMap<Integer, T> tailMap = circle.tailMap(hash); //返回此映射的部分视图,其键大于等于 hash
			hash = tailMap.isEmpty() ? circle.firstKey() : tailMap.firstKey();
		}
		//正好命中
		return circle.get(hash);
	}

	/**
	 * Hash算法对象,用于自定义hash算法
	 * @author xiaoleilu
	 *
	 */
	public interface HashFunc {
		public Integer hash(Object key);
	}

	public static void main(String[] args) {
		ConsistentHash<String> hash = new ConsistentHash<String>(3, Arrays.asList("192.168.1.1:11211", "192.168.1.2:11211"));
		System.out.println(hash.get("test"));
	}
}

 

你可能感兴趣的:(hash)