安装根文件系统分为两个阶段:
1,内核安装特殊rootfs文件系统,该文件系统仅提供一个作为初始安装点的空目录
start_kernel()->vfs_caches_init()->mnt_init()->init_rootfs()
/*初始化根文件系统*/ int __init init_rootfs(void) { int err; /*初始化ramfs_backing_dev_info*/ err = bdi_init(&ramfs_backing_dev_info); if (err) return err; /*注册rootfs_fs_type文件类型*/ err = register_filesystem(&rootfs_fs_type); if (err)/*如果出错,销毁上面初始化的*/ bdi_destroy(&ramfs_backing_dev_info); return err; }
static struct backing_dev_info ramfs_backing_dev_info = { .name = "ramfs", .ra_pages = 0, /* No readahead */ .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_MAP_DIRECT | BDI_CAP_MAP_COPY | BDI_CAP_READ_MAP | BDI_CAP_WRITE_MAP | BDI_CAP_EXEC_MAP, };
/** * register_filesystem - register a new filesystem * @fs: the file system structure * * Adds the file system passed to the list of file systems the kernel * is aware of for mount and other syscalls. Returns 0 on success, * or a negative errno code on an error. * * The &struct file_system_type that is passed is linked into the kernel * structures and must not be freed until the file system has been * unregistered. */ /*注册一个新的文件系统*/ int register_filesystem(struct file_system_type * fs) { int res = 0; struct file_system_type ** p; BUG_ON(strchr(fs->name, '.')); if (fs->next) return -EBUSY; INIT_LIST_HEAD(&fs->fs_supers); write_lock(&file_systems_lock); /*从system_type链表中查找指定名称的file_system_type*/ p = find_filesystem(fs->name, strlen(fs->name)); if (*p) res = -EBUSY; else *p = fs; write_unlock(&file_systems_lock); return res; }
根文件系统定义如下
static struct file_system_type rootfs_fs_type = { .name = "rootfs", .get_sb = rootfs_get_sb, .kill_sb = kill_litter_super, };
下面看看他的两个函数
/*获得根目录的sb*/ static int rootfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data, struct vfsmount *mnt) { return get_sb_nodev(fs_type, flags|MS_NOUSER, data, ramfs_fill_super, mnt); }
int get_sb_nodev(struct file_system_type *fs_type, int flags, void *data, int (*fill_super)(struct super_block *, void *, int), struct vfsmount *mnt) { int error; /*获得sb结构*/ struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL); if (IS_ERR(s)) return PTR_ERR(s); s->s_flags = flags; /*这里实际调用ramfs_fill_super,对sb结构的属性进行设置*/ error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); if (error) { deactivate_locked_super(s); return error; } s->s_flags |= MS_ACTIVE; simple_set_mnt(mnt, s);/*设置mnt和sb关联*/ return 0; }
/** * sget - find or create a superblock * @type: filesystem type superblock should belong to * @test: comparison callback * @set: setup callback * @data: argument to each of them */ /*查找或创建一个sb结构*/ struct super_block *sget(struct file_system_type *type, int (*test)(struct super_block *,void *), int (*set)(struct super_block *,void *), void *data) { struct super_block *s = NULL; struct super_block *old; int err; retry: spin_lock(&sb_lock); if (test) { list_for_each_entry(old, &type->fs_supers, s_instances) { if (!test(old, data)) continue; if (!grab_super(old)) goto retry; if (s) { up_write(&s->s_umount); destroy_super(s); } return old; } } if (!s) {/*如果找不到sb,从内存中申请一个*/ spin_unlock(&sb_lock); s = alloc_super(type); if (!s) return ERR_PTR(-ENOMEM); goto retry; } err = set(s, data); if (err) { spin_unlock(&sb_lock); up_write(&s->s_umount); destroy_super(s); return ERR_PTR(err); } /*初始化得到的sb结构*/ s->s_type = type; strlcpy(s->s_id, type->name, sizeof(s->s_id)); /*加入链表尾*/ list_add_tail(&s->s_list, &super_blocks); list_add(&s->s_instances, &type->fs_supers); spin_unlock(&sb_lock); get_filesystem(type); return s; }
/*所有超级块对象都以双向循环链表的形式链接在一起,量表中第一个 元素用super_blocks变量表示,而超级块对象的s_list字段存放指向链表 相邻元素的指针*/ LIST_HEAD(super_blocks);
/** * alloc_super - create new superblock * @type: filesystem type superblock should belong to * * Allocates and initializes a new &struct super_block. alloc_super() * returns a pointer new superblock or %NULL if allocation had failed. */ static struct super_block *alloc_super(struct file_system_type *type) { /*从内存中申请sb*/ struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); static const struct super_operations default_op; if (s) { if (security_sb_alloc(s)) { kfree(s); s = NULL; goto out; } /*初始化*/ INIT_LIST_HEAD(&s->s_files); INIT_LIST_HEAD(&s->s_instances); INIT_HLIST_HEAD(&s->s_anon); INIT_LIST_HEAD(&s->s_inodes); INIT_LIST_HEAD(&s->s_dentry_lru); init_rwsem(&s->s_umount); mutex_init(&s->s_lock); lockdep_set_class(&s->s_umount, &type->s_umount_key); /* * The locking rules for s_lock are up to the * filesystem. For example ext3fs has different * lock ordering than usbfs: */ lockdep_set_class(&s->s_lock, &type->s_lock_key); /* * sget() can have s_umount recursion. * * When it cannot find a suitable sb, it allocates a new * one (this one), and tries again to find a suitable old * one. * * In case that succeeds, it will acquire the s_umount * lock of the old one. Since these are clearly distrinct * locks, and this object isn't exposed yet, there's no * risk of deadlocks. * * Annotate this by putting this lock in a different * subclass. */ down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); s->s_count = S_BIAS; atomic_set(&s->s_active, 1); mutex_init(&s->s_vfs_rename_mutex); mutex_init(&s->s_dquot.dqio_mutex); mutex_init(&s->s_dquot.dqonoff_mutex); init_rwsem(&s->s_dquot.dqptr_sem); init_waitqueue_head(&s->s_wait_unfrozen); s->s_maxbytes = MAX_NON_LFS; s->dq_op = sb_dquot_ops; s->s_qcop = sb_quotactl_ops; s->s_op = &default_op; s->s_time_gran = 1000000000; } out: return s; }
kill_litter_super的过程相反,这里不再写了。
构造根目录是由init_mount_tree()函数实现的,该函数在前面已经介绍过了。
2,安装实际根文件系统
关于__setup宏
__setup宏来注册关键字及相关联的处理函数,__setup宏在include/linux/init.h中定义,其原型如下:
__setup(string, _handler);
其中:string是关键字,_handler是关联处理函数。__setup只是告诉内核在启动时输入串中含有string时,内核要去
执行_handler。String必须以“=”符结束以使parse_args更方便解析。紧随“=”后的任何文本都会作为输入传给
_handler。下面的例子来自于init/do_mounts.c,其中root_dev_setup作为处理程序被注册给“root=”关键字:
__setup("root=", root_dev_setup);
比如我们在启动向参数终有
noinitrd root=/dev/mtdblock2 console=/linuxrc
setup_arch解释时会发现root=/dev/mtdblock2,然后它就会调用root_dev_setup
static int __init root_dev_setup(char *line) { strlcpy(saved_root_name, line, sizeof(saved_root_name)); return 1; } __setup("root=", root_dev_setup);
Start_kernel->rest_init->init-> prepare_namespace->
/* * Prepare the namespace - decide what/where to mount, load ramdisks, etc. */ void __init prepare_namespace(void) { int is_floppy; if (root_delay) { printk(KERN_INFO "Waiting %dsec before mounting root device...\n", root_delay); ssleep(root_delay); } /* * wait for the known devices to complete their probing * * Note: this is a potential source of long boot delays. * For example, it is not atypical to wait 5 seconds here * for the touchpad of a laptop to initialize. */ wait_for_device_probe(); /*创建/dev/ram0,必须得,因为initrd要放到/dev/ram0里*/ md_run_setup(); if (saved_root_name[0]) {/*saved_root_name为从启动参数"root"中获取的设备文件名*/ root_device_name = saved_root_name; if (!strncmp(root_device_name, "mtd", 3) || !strncmp(root_device_name, "ubi", 3)) {/*如果设备名开头为这两个*/ mount_block_root(root_device_name, root_mountflags); goto out; } /*主设备号和次设备号*/ ROOT_DEV = name_to_dev_t(root_device_name); if (strncmp(root_device_name, "/dev/", 5) == 0) root_device_name += 5;/*滤掉'/dev/'字符*/ } if (initrd_load()) goto out; /* wait for any asynchronous scanning to complete */ if ((ROOT_DEV == 0) && root_wait) { printk(KERN_INFO "Waiting for root device %s...\n", saved_root_name); while (driver_probe_done() != 0 || (ROOT_DEV = name_to_dev_t(saved_root_name)) == 0) msleep(100); async_synchronize_full(); } is_floppy = MAJOR(ROOT_DEV) == FLOPPY_MAJOR; if (is_floppy && rd_doload && rd_load_disk(0)) ROOT_DEV = Root_RAM0; /*实际操作*/ mount_root(); out: devtmpfs_mount("dev");/*devfs从虚拟的根文件系统的/dev umount*/ sys_mount(".", "/", NULL, MS_MOVE, NULL);/*将挂载点从当前目录【/root】(在mount_root函数中设置的)移到根目录*/ /*当前目录即【/root】(真正文件系统挂载的目录)做为系统根目录*/ sys_chroot("."); }
mount_root操作
void __init mount_root(void) { #ifdef CONFIG_ROOT_NFS if (MAJOR(ROOT_DEV) == UNNAMED_MAJOR) { if (mount_nfs_root()) return; printk(KERN_ERR "VFS: Unable to mount root fs via NFS, trying floppy.\n"); ROOT_DEV = Root_FD0; } #endif #ifdef CONFIG_BLK_DEV_FD if (MAJOR(ROOT_DEV) == FLOPPY_MAJOR) { /* rd_doload is 2 for a dual initrd/ramload setup */ if (rd_doload==2) { if (rd_load_disk(1)) { ROOT_DEV = Root_RAM1; root_device_name = NULL; } } else change_floppy("root floppy"); } #endif #ifdef CONFIG_BLOCK/*这里是一般流程*/ create_dev("/dev/root", ROOT_DEV);/*用系统调用创建"/dev/root"*/ mount_block_root("/dev/root", root_mountflags); #endif }
void __init mount_block_root(char *name, int flags) { /*从cache中分配空间*/ char *fs_names = __getname_gfp(GFP_KERNEL | __GFP_NOTRACK_FALSE_POSITIVE); char *p; #ifdef CONFIG_BLOCK char b[BDEVNAME_SIZE]; #else const char *b = name; #endif /*获得文件系统类型,如果在bootoption里有, 则就为这个文件系统类型,如果没有指定, 则返回ilesytem链上所有类型,下面再对每个进行尝试.*/ get_fs_names(fs_names); retry: for (p = fs_names; *p; p += strlen(p)+1) { /*实际的安装工作,这里调用了mount系统调用 将文件系统挂到/root目录,p为文件系统类型,由get_fs_names得到 */ int err = do_mount_root(name, p, flags, root_mount_data); switch (err) { case 0: goto out; case -EACCES: flags |= MS_RDONLY; goto retry; case -EINVAL: continue; } /* * Allow the user to distinguish between failed sys_open * and bad superblock on root device. * and give them a list of the available devices */ #ifdef CONFIG_BLOCK __bdevname(ROOT_DEV, b); #endif printk("VFS: Cannot open root device \"%s\" or %s\n", root_device_name, b); printk("Please append a correct \"root=\" boot option; here are the available partitions:\n"); printk_all_partitions(); #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT printk("DEBUG_BLOCK_EXT_DEVT is enabled, you need to specify " "explicit textual name for \"root=\" boot option.\n"); #endif panic("VFS: Unable to mount root fs on %s", b); } printk("List of all partitions:\n"); printk_all_partitions(); printk("No filesystem could mount root, tried: "); for (p = fs_names; *p; p += strlen(p)+1) printk(" %s", p); printk("\n"); #ifdef CONFIG_BLOCK __bdevname(ROOT_DEV, b); #endif panic("VFS: Unable to mount root fs on %s", b); out: putname(fs_names); }
static int __init do_mount_root(char *name, char *fs, int flags, void *data) { /*mount系统调用来做实际的安装文件系统工作*/ int err = sys_mount(name, "/root", fs, flags, data); if (err) return err; /*改变当前路径到根目录*/ sys_chdir("/root"); ROOT_DEV = current->fs->pwd.mnt->mnt_sb->s_dev; printk("VFS: Mounted root (%s filesystem)%s on device %u:%u.\n", current->fs->pwd.mnt->mnt_sb->s_type->name, current->fs->pwd.mnt->mnt_sb->s_flags & MS_RDONLY ? " readonly" : "", MAJOR(ROOT_DEV), MINOR(ROOT_DEV)); return 0; }
到此,根文件系统的安装过程算是完成了,中间关于mount等系统调用将在后面分析。可以看出总的步骤主要有:
1,创建一个rootfs,这个是虚拟的rootfs,是内存文件系统(和ramfs),后面还会指向具体的根文件系统;
2,从系统启动参数中获取设备文件名以及设备号;
3,调用系统调用创建符号链接,并调用mount系统调用进程实际的安装操作;
4,改变进程当前目录;
5,移动rootfs文件系统根目录上得已经安装文件系统的安装点;
rootfs特殊文件系统没有被卸载,他只是隐藏在基于磁盘的根文件系统下了。