KDD会议的研究领域

总结了一下sigkdd目前的主要研究领域,可以看出来数据挖掘的发展方向和研究热点

具体罗列如下

2012年,KDD会议的研究主题包括以下各方面

关联分析(association analysis)
分类与回归分析算法(classification and regression methods)
半监督式学习(semi-supervised learning)
聚类(clustering)
因式分解(factorization)
迁移学习和多任务学习(transfer and multi-task learning)
特征选择(feature selection)
社交网络(social networks)
图数据挖掘(mining of graph data)
时空数据分析(temporal and spatial data analysis)
可扩展性(scalability)
隐私保护(privacy)
安全性(security)
可视化(visualization)
文本分析(text analysis)
网页挖掘(web mining)
移动数据挖掘(mining mobile data)
推荐系统(recommender systems)
生物信息学(bioinformatics)
电子商务(e-commerce)
在线广告(online advertising)
异常检测(anomaly detection)
大数据挖掘(knowledge discovery from big data)


这些不同主题的论文,在会议期间,按照不同的主题被分为若干个分会(session),
今年的session包括以下内容,基本上囊括了数据挖掘已有的所有主要分支了

Research Session - A1: PageRank and social networks
Research Session - A2: Pattern mining
Research Session - A3: Probabilistic models
Research Session - A4: Supervised learning
Industry/Govt Track - A5: Mobile Computing


Research Session - B1: Social opinions
Research Session - B2: Time series
Research Session - B3: Matrices and tensors
Research Session - B4: Unsupervised learning
Industry/Govt Track - B5: Social Network Analysis


Research Session - C1: Social and web mining applications
Research Session - C2: Event mining
Research Session - C3: Matrix approximation
Research Session - C4: Supervised learning with multivariate data
Industry/Govt Track - C5: Web Applications



Research Session - A1: Community mining
Research Session - A2: Sequential and spatio-temporal patterns
Research Session - A3: Personalization and recommendation
Research Session - A4: Supervised learning with auxiliary information
Industry/Govt Track - A5: Computational Advertising



Research Session - B1: Review, discussion, and Q & A
Research Session - B2: Outlier and intrusion detection
Research Session - B3: Feature selection
Research Session - B4: Nearest neighbors
Industry/Govt Track - B5: Business Intelligence



Research Session - C1: Team, trends, and social profiling
Research Session - C2: Privacy
Research Session - C3: Supervised learning applications
Research Session - C4: Information extraction
Industry/Govt Track - C5: Medical Informatics



Research Session - A1: Ads and video recommendation
Research Session - A2: Graph mining
Research Session - A3: Recommendation
Research Session - A4: Clustering
Industry/Govt Track - A5: Intelligent Systems



Research Session - B1: Keywords and documents
Research Session - B2: Patterns
Research Session - B3: Spatial and pattern recognition

你可能感兴趣的:(数据挖掘,session,Social,classification,Visualization,Scalability)