where n is allowed to go to infinity. This can actually yield very accurate approximations of e using relatively small values of n.
Output the approximations of e generated by the above formula for the values of n from 0 to 9. The beginning of your output should appear similar to that shown below.
4 2.708333333
这道题就是求e了,e的算法图中也给明了,假如i=4,e=1+1/1!+1/2!+1/3!+1/4!
就是注意一下格式,我是用printf,好控制一些
#include <stdio.h> #include <math.h> double arr[10]; void cal(void) { int i; double ft,s; ft=arr[0]=s=1.0; for(i=1;i<10;++i) { s*=i; arr[i]=1.0/double(s)+ft; ft=arr[i]; } } int main() { int i; printf("n e\n"); printf("- -----------\n"); cal(); printf("0 1\n"); printf("1 2\n"); printf("2 2.5\n"); for(i=3;i<10;++i) printf("%d %.9f\n",i,arr[i]); return 0; }