POJ 1789-Truck History 最小生成树 Kruskal算法

题目来源:http://acm.pku.edu.cn/JudgeOnline/problem?id=1789

 

解题报告:

 

还是典型的最小生成树的问题,我用了Kruskal算法,discuss里说,Prim算法适合稠密图,Kruskal算法适合稀疏图。这道题显然是稠密图,所以应该用Prim算法比较合适,不过我还是不太会用prioriy_queue,只能用Kruskal算法。。。

 

#include <iostream> #include <algorithm> #include <string> using namespace std; struct edge { int u; int v; int weight; }; int p[2000]; int rank[2000]; string code[2000]; edge E[1999000]; int N;//点的个数 int edgeNum; //边的个数 void makeSet(int i) { p[i]=i; rank[i]=1; } int findSet(int u) { if(u!=p[u]) p[u]=findSet(p[u]); return p[u]; } void link(int x,int y) { if(rank[x]<rank[y]) p[x]=y; else { p[y]=x; if(rank[x]==rank[y]) rank[x]++; } } void _union(int u,int v) { link(findSet(u),findSet(v)); } bool comp(edge e1, edge e2) { return e1.weight < e2.weight; } int Kruskal() { for(int i=0;i<N;i++) makeSet(i); sort(E,E+edgeNum,comp); int result=0; for(int i=0;i<edgeNum;i++) { if(findSet(E[i].u)!=findSet(E[i].v)) { result+=E[i].weight; _union(E[i].u,E[i].v); } } return result; } int distance(int x, int y) { int dis=0; for(int i=0;i<7;i++) { if(code[x].at(i)!=code[y].at(i)) dis++; } return dis; } int main() { while((cin >> N) && N!=0) { for(int i=0;i<N;i++) cin >> code[i]; edgeNum=0; for(int i=0;i<N;i++) { for(int j=i+1;j<N;j++) { E[edgeNum].u=i; E[edgeNum].v=j; E[edgeNum].weight=distance(i,j); edgeNum++; } } int result=Kruskal(); printf("The highest possible quality is 1/%d./n",result); } }

 

附录:

 

Truck History
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 7498   Accepted: 2664

Description

Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks are used for vegetable delivery, other for furniture, or for bricks. The company has its own code describing each type of a truck. The code is simply a string of exactly seven lowercase letters (each letter on each position has a very special meaning but that is unimportant for this task). At the beginning of company's history, just a single truck type was used but later other types were derived from it, then from the new types another types were derived, and so on.

Today, ACM is rich enough to pay historians to study its history. One thing historians tried to find out is so called derivation plan -- i.e. how the truck types were derived. They defined the distance of truck types as the number of positions with different letters in truck type codes. They also assumed that each truck type was derived from exactly one other truck type (except for the first truck type which was not derived from any other type). The quality of a derivation plan was then defined as
1/Σ(to,td)d(to,td)
where the sum goes over all pairs of types in the derivation plan such that t o is the original type and t d the type derived from it and d(t o,t d) is the distance of the types.
Since historians failed, you are to write a program to help them. Given the codes of truck types, your program should find the highest possible quality of a derivation plan.

Input

The input consists of several test cases. Each test case begins with a line containing the number of truck types, N, 2 <= N <= 2 000. Each of the following N lines of input contains one truck type code (a string of seven lowercase letters). You may assume that the codes uniquely describe the trucks, i.e., no two of these N lines are the same. The input is terminated with zero at the place of number of truck types.

Output

For each test case, your program should output the text "The highest possible quality is 1/Q.", where 1/Q is the quality of the best derivation plan.

Sample Input

4
aaaaaaa
baaaaaa
abaaaaa
aabaaaa
0

Sample Output

The highest possible quality is 1/3.

你可能感兴趣的:(算法,String,input,each,distance,Types)