- 综述:
- OpenCV有针对矩阵操作的C语言函数. 许多其他方法提供了更加方便的C++接口,其效率与OpenCV一样.
- OpenCV将向量作为1维矩阵处理.
- 矩阵按行存储,每行有4字节的校整.
- 分配矩阵空间:
CvMat* cvCreateMat(int rows, int cols, int type);
type: 矩阵元素类型. 格式为CV_<bit_depth>(S|U|F)C<number_of_channels>. 例如: CV_8UC1 表示8位无符号单通道矩阵, CV_32SC2表示32位有符号双通道矩阵.
例程: CvMat* M = cvCreateMat(4,4,CV_32FC1);
- 释放矩阵空间:
CvMat* M = cvCreateMat(4,4,CV_32FC1); cvReleaseMat(&M);
- 复制矩阵:
CvMat* M1 = cvCreateMat(4,4,CV_32FC1);
CvMat* M2;
M2=cvCloneMat(M1);
- 初始化矩阵:
double a[] = { 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12 };
CvMat Ma=cvMat(3, 4, CV_64FC1, a);
另一种方法: CvMat Ma; cvInitMatHeader(&Ma, 3, 4, CV_64FC1, a);
- 初始化矩阵为单位阵:
CvMat* M = cvCreateMat(4,4,CV_32FC1); cvSetIdentity(M); // 这里似乎有问题,不成功
存取矩阵元素
- 假设需要存取一个2维浮点矩阵的第(i,j)个元素.
- 间接存取矩阵元素:
-
cvmSet(M,i,j,2.0); // Set M(i,j) t = cvmGet(M,i,j); // Get M(i,j)
- 直接存取,假设使用4-字节校正:
CvMat* M = cvCreateMat(4,4,CV_32FC1); int n = M->cols; float *data = M->data.fl; data[i*n+j] = 3.0;
- 直接存取,校正字节任意:
CvMat* M = cvCreateMat(4,4,CV_32FC1);
int step = M->step/sizeof(float);
float *data = M->data.fl;
(data+i*step)[j] = 3.0;
- 直接存取一个初始化的矩阵元素:
double a[16]; CvMat Ma = cvMat(3, 4, CV_64FC1, a); a[i*4+j] = 2.0; // Ma(i,j)=2.0;
矩阵/向量操作
- 矩阵-矩阵操作:
CvMat *Ma, *Mb, *Mc; cvAdd(Ma, Mb, Mc); // Ma+Mb -> Mc cvSub(Ma, Mb, Mc); // Ma-Mb -> Mc cvMatMul(Ma, Mb, Mc); // Ma*Mb -> Mc
- 按元素的矩阵操作:
CvMat *Ma, *Mb, *Mc; cvMul(Ma, Mb, Mc); // Ma.*Mb -> Mc cvDiv(Ma, Mb, Mc); // Ma./Mb -> Mc cvAddS(Ma, cvScalar(-10.0), Mc); // Ma.-10 -> Mc
- 向量乘积:
double va[] = {1, 2, 3}; double vb[] = {0, 0, 1}; double vc[3];
CvMat Va=cvMat(3, 1, CV_64FC1, va); CvMat Vb=cvMat(3, 1, CV_64FC1, vb); CvMat Vc=cvMat(3, 1, CV_64FC1, vc);
double res=cvDotProduct(&Va,&Vb); // 点乘: Va . Vb -> res cvCrossProduct(&Va, &Vb, &Vc); // 向量积: Va x Vb -> Vc end{verbatim} 注意 Va, Vb, Vc 在向量积中向量元素个数须相同.
- 单矩阵操作:
CvMat *Ma, *Mb; cvTranspose(Ma, Mb); // transpose(Ma) -> Mb (不能对自身进行转置) CvScalar t = cvTrace(Ma); // trace(Ma) -> t.val[0] double d = cvDet(Ma); // det(Ma) -> d cvInvert(Ma, Mb); // inv(Ma) -> Mb
- 非齐次线性系统求解:
CvMat* A = cvCreateMat(3,3,CV_32FC1); CvMat* x = cvCreateMat(3,1,CV_32FC1); CvMat* b = cvCreateMat(3,1,CV_32FC1); cvSolve(&A, &b, &x); // solve (Ax=b) for x
- 特征值分析(针对对称矩阵):
CvMat* A = cvCreateMat(3,3,CV_32FC1); CvMat* E = cvCreateMat(3,3,CV_32FC1); CvMat* l = cvCreateMat(3,1,CV_32FC1);
// E = 对应的特征向量 (每行)
- 奇异值分解SVD:
CvMat* A = cvCreateMat(3,3,CV_32FC1); CvMat* U = cvCreateMat(3,3,CV_32FC1); CvMat* D = cvCreateMat(3,3,CV_32FC1); CvMat* V = cvCreateMat(3,3,CV_32FC1); cvSVD(A, D, U, V, CV_SVD_U_T|CV_SVD_V_T); // A = U D V^T 标号使得 U 和 V 返回时被转置(若没有转置标号,则有问题不成功!!!).
|