关于差分信号

 

对差分信(VDS号而言,对其影响最大的因素是它们的对地阻抗是否一致,也就是对地平衡度,它们之间相对的阻抗影响并不特别重要,之间分布电容大了只会衰落信号强度,不会引入噪声和干扰,也就是对信噪比不会产生很大影响。

差分信号只是使用两根信号线传输一路信号,依靠信号间电压差进行判决的电路,既可以是模拟信号,也可以是数字信号。实际的信号都是模拟信号,数字信号只是模拟信号用门限电平量化后的取样结果。因此差分信号对于数字和模拟信号都可以定义。

一个差分信号是用一个数值来表示两个物理量之间的差异。从严格意义上来讲,所有电压信号都是差分的,因为一个电压只能是相对于另一个电压而言的。在某些系统里,系统GND)被用作电压基准点。当作电压测量基准时,这种信号规划被称之为单端的。我们使用该术语是因为信号是用单个导体上的电压来表示的。

VDS不是传输速率快,是抗干扰能力强。有信号时,一棵线电压+V,另一棵线电压-V,接收端获得的信号是两者的差值+V-(-V)=2V。外界的干扰信号在两棵线中山上的是同样幅度和极性的+v信号,在接收端差值的过程中互相抵消了。由于抗干扰能力强,数字信号不易出错,可以避免因校验出错引起的重发,从这个意义上说差分信号传输速率。

差分的概念在《模拟电路》课程里已经学习过了。差分信号是一对大小相等而极性相反的对称信号,差分信号用于传输有用的信号。共模信号是作用于差分信号线上的一对大小相等极性也相同的信号,共模信号往往来自于外部干扰。差分信号在接收端是靠差分放大器来检测的。差分放大器只对两路输入信号之间的差值起放大作用,而对两路输入信号共同对地的电位不起作用。

差分传输的信号能够对外部干扰能够起到很强的抗干扰能力。

原始的输入信号经过倒相器和缓冲器之后形成一对大小相等而极性相反的差分信号。对模拟信号,倒相器可以用运算放大器的反相比例放大电路来实现,缓冲器可以用运算放大器的同相跟随电路来实现。对数字信号,可以分别用非门逻辑和同相缓冲器来实现

差分信号在PCB(印制线路板)上被安排成密近平行线PCB布线要领!),用电缆连接两台设备时则采用并行排线或双绞线。在差分信号传输过程中会遇到外部干扰信号,但是,由于两根差分信号线始终在一起,因此干扰信号一般都会同时作用在两根信号线上,形成叠加在两根信号线上大小相等相位也相同的共模信号。

到了接收端,差分放大器只对差分信号(有用信号)敏感,而对共模信号(干扰信号)形成抑制。这样,差分传输的信号就具备了很强的抗干扰能力,因此特别适用于中远距离通信或高速通信。相比之下,UART的两根信号线TXDRXD就不适合于远距离通信,因为不是差分信号,所以一旦遇到外部干扰,信号就会严重畸变,在接收端因无法区分有用信号的和干扰信号而会形成大量的误码。

 

 

 

 

電路板設計過程中採用差分信號

線佈線的優勢和佈線策略

佈線非常靠近的差分信號對相互之間也會互相緊密耦合,這種互相之間的耦合會減小EMI發射,差分信號線的主要缺點是增加了PCB的面積,本文介紹電路板設計過程中採用差分信號線佈線的佈線策略。

眾所周知,信號具有沿信號線或者PCB線下面傳輸的特性,即便我們可能並不熟悉單端模式佈線策略,單端這個術語將信號的這種傳輸特性與差模和共模種信號傳輸方式區別開來,後面這兩種信號傳輸方式通常更為複雜。

差分和共模方式

差模信號透過一對信號線來傳輸。一個信號線上傳輸我們通常所理解的信號;另一個信號線上則傳輸一個等值而方向相反(至少在理論上是這樣)的信號。差分和單端模式最初出現時差異不大,因為所有的信號都存在回路。

單端模式的信號通常經由一個零電壓的電路(或者稱為地)來返回。差分信號中的每一個信號都要透過地電路來返回。由於每一個信號對實際上是等值而反向的,所以返回電路就簡單地互相抵消了,因此在零電壓或者是地電路上就不會出現差分信號返回的成份。

共模方式是指信號出現在一個(差分)信號線對的兩個信號線上,或者是同時出現在單端信號線和地上。對這個概念的理解並不直觀,因為很難想象如何產生這樣的信號。這主要是因為通常我們並不產生共模信號的緣故。共模信號絕大多數都是根據假想情況在電路中產生或者由鄰近的或外界的信號源耦合進來的噪音信號。共模信號幾乎總是‘有害的’,許多設計規則就是專為預防共模信號出現而設計的。

差分信號線的佈線

通常(當然也有一些例外)差分信號也是高速信號,所以高速設計規則通常也都適用於差分信號的佈線,特別是設計傳輸線1這樣的信號線時更是如此。這就意味著我們必須非常謹慎地設計信號線的佈線,以確保信號線的特徵阻抗沿信號線各處連續並且保持一個常數。

在差分線對的佈局佈線過程中,我們希望差分線對中的兩個PCB線完全一致。這就意味著,在實際應用中應該盡最大的努力來確保差分線對中的PCB線具有完全一樣的阻抗並且佈線的長度也完全一致。差分PCB線通常總是成對佈線,而且它們之間的距離沿線對的方向在任意位置都保持為一個常數不變。通常情況下,差分線對的佈局佈線總是盡可能地靠近。

差分信號的優勢

單端信號通常總是參照某種‘參考’電平。這種‘參考’電平可能是一個正值電壓也可能是地電壓、一個元件的閾值電壓、或者是其它什麼地方的另外一個信號。而另一方面差分信號則總是參照該差分線對中的另一方。也就是說,如果一個信號線(+信號)上的電壓高於另一個信號線(-信號)上的電壓,那麼我們就可以得到一種邏輯狀態;而如果前者低於後者那麼我們就可以得到另外的一種邏輯狀態。

差分信號具有如下幾個優點:

  1. 時序得到精確的定義,這是由於控制信號線對的交叉點要比控制信號相對於一個參考電平的絕對電壓值來得簡單。這也是需要精確實現差分線對等長佈線的一個理由。如果信號不能同時到達差分線對的另一端的話,那麼源端所能夠提供的任何時序的控制都會大打折扣。此外,如果差分線對遠端的信號並非嚴格意義上的等值而反向,那麼就會出現共模噪音,而這將導致信號時序和EMI方面的問題。
  2. 由於差分信號並不參照它們自身以外的任何信號,並且可以更加嚴格地控制信號交叉點的時序,所以差分電路同常規的單端信號電路相比通常可以工作在更高的速度。

由於差分電路的工作取決於兩個信號線(它們的信號等值而反向)上信號之間的差值,同周圍的噪音相比,得到的信號就是任何一個單端信號的兩倍大小。所以,在其它所有情況都一樣的條件下,差分信號總是具有更高的信噪比因而提供更高的性能。

差分電路對於差分對上的信號電平之間的差異非常靈敏。但是相對於一些其它的參考(尤其是地)來說,它們對於差分線上的絕對電壓值卻不敏感。相對來說,差分電路對於類似地彈反射和其它可能存在於電源和地平面上的噪音信號等這樣的問題是不敏感的,而對共模信號來說,它們則會完全一致地出現在每一條信號線上。

差分信號對EMI和信號之間的串擾耦合也具有一定的免疫能力。如果一對差分信號線對的佈線非常緊湊,那麼任何外部耦合的噪音都會相同程度地耦合到線對中的每一條信號線上。所以耦合的噪音就成為‘共模’噪音,而差分信號電路對這種信號具有非常完美的免疫能力。如果線對是絞合在一起的(比如雙絞線),那麼信號線對耦合噪音的免疫能力會更強。由於不可能在PCB上很方便地實現差分信號的絞合,那麼盡可能地將它們的佈線靠近在一起就成為實際應用中一種非常好的辦法。

佈線非常靠近的差分信號對相互之間也會互相緊密耦合。這種互相之間的耦合會減小EMI發射,特別是同單端PCB信號線相比。可以這樣想象,差分信號中每一條信號線對外的輻射是大小相等而方向相反,因此會相互抵消,就像信號在雙絞線中的情況一樣。差分信號在佈線時靠得越近,相互之間的耦合也就越強,因而對外的EMI輻射也就越小。

差分電路的主要缺點就是增加了PCB線。所以,如果應用過程中不能發揮差分信號的優點的話,那麼不值得增加PCB面積。但是如果設計出的電路性能方面有重大改進的話,那麼增加的佈線面積所付出的代價就是值得的。

你可能感兴趣的:(工作)