stl_algobase.h中的算法,比较值得学习的是copy(),它“无所不用其极”的改善效率。copy的目的是复制一段元素到指定区间,复制操作最容易想到赋值操作符=,但是有的赋值操作符=是trivial的,可以直接拷贝。关于赋值操作符=是不是trivial的,可以参考“Memberwise copy(深拷贝)与Bitwise copy(浅拷贝)的区别”。
G++ 2.91.57,cygnus\cygwin-b20\include\g++\stl_algobase.h 完整列表 /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /* NOTE: This is an internal header file, included by other STL headers. * You should not attempt to use it directly. */ #ifndef __SGI_STL_INTERNAL_ALGOBASE_H #define __SGI_STL_INTERNAL_ALGOBASE_H #ifndef __STL_CONFIG_H #include <stl_config.h> #endif #ifndef __SGI_STL_INTERNAL_RELOPS #include <stl_relops.h> #endif #ifndef __SGI_STL_INTERNAL_PAIR_H #include <stl_pair.h> #endif #ifndef __TYPE_TRAITS_H_ #include <type_traits.h> #endif #include <string.h> #include <limits.h> #include <stdlib.h> #include <stddef.h> #include <new.h> #include <iostream.h> #ifndef __SGI_STL_INTERNAL_ITERATOR_H #include <stl_iterator.h> #endif __STL_BEGIN_NAMESPACE template <class ForwardIterator1, class ForwardIterator2, class T> inline void __iter_swap(ForwardIterator1 a, ForwardIterator2 b, T*) {//T是迭代器,T*就是 T tmp = *a; //迭代器指向的类型了 *a = *b; *b = tmp; } //对调两个迭代器指向元素的值 template <class ForwardIterator1, class ForwardIterator2> inline void iter_swap(ForwardIterator1 a, ForwardIterator2 b) { // iter_swap() 是「有必要运用迭代器之 value type」的一个好例子。 // 是的,它必须知道迭代器的 value type,才能够据此宣告一个物件,用來 // 暂时放置迭代器所指的物件。 __iter_swap(a, b, value_type(a)); // 注意第三參數的型別! /* // 以下定义于 <stl_iterator.h> template <class Iterator> inline typename iterator_traits<Iterator>::value_type* value_type(const Iterator&) { return static_cast<typename iterator_traits<Iterator>::value_type*>(0); } */ // 侯捷认为(并予实证),不需像上行那样调用,可改用以下写法: // typename iterator_traits<ForwardIterator1>::value_type tmp = *a; // *a = *b; // *b = tmp; } template <class T> inline void swap(T& a, T& b) { T tmp = a; a = b; b = tmp; } #ifndef __BORLANDC__ #undef min #undef max template <class T> inline const T& min(const T& a, const T& b) { return b < a ? b : a; } template <class T> inline const T& max(const T& a, const T& b) { return a < b ? b : a; } #endif /* __BORLANDC__ */ template <class T, class Compare> inline const T& min(const T& a, const T& b, Compare comp) { return comp(b, a) ? b : a; // 由 comp 決定「大小比较」标准 } template <class T, class Compare> inline const T& max(const T& a, const T& b, Compare comp) { return comp(a, b) ? b : a; // 由 comp 決定「大小比较」标准 } template <class InputIterator, class OutputIterator> inline OutputIterator __copy(InputIterator first, InputIterator last, OutputIterator result, input_iterator_tag) { for ( ; first != last; ++result, ++first) *result = *first; return result; } template <class RandomAccessIterator, class OutputIterator, class Distance> inline OutputIterator __copy_d(RandomAccessIterator first, RandomAccessIterator last, OutputIterator result, Distance*) { for (Distance n = last - first; n > 0; --n, ++result, ++first) *result = *first;//一个一个赋值 return result; } template <class RandomAccessIterator, class OutputIterator> inline OutputIterator __copy(RandomAccessIterator first, RandomAccessIterator last, OutputIterator result, random_access_iterator_tag) { return __copy_d(first, last, result, distance_type(first)); } template <class InputIterator, class OutputIterator> struct __copy_dispatch { OutputIterator operator()(InputIterator first, InputIterator last, OutputIterator result) { return __copy(first, last, result, iterator_category(first)); } }; #ifdef __STL_CLASS_PARTIAL_SPECIALIZATION //__true_type意味着has trivial operator=。可以直接拷贝 template <class T> inline T* __copy_t(const T* first, const T* last, T* result, __true_type) { memmove(result, first, sizeof(T) * (last - first)); return result + (last - first); } //__false_type意味着has non-rivial operator= template <class T> inline T* __copy_t(const T* first, const T* last, T* result, __false_type) { return __copy_d(first, last, result, (ptrdiff_t*) 0); } template <class T> struct __copy_dispatch<T*, T*> { T* operator()(T* first, T* last, T* result) { typedef typename __type_traits<T>::has_trivial_assignment_operator t; return __copy_t(first, last, result, t()); } }; template <class T> struct __copy_dispatch<const T*, T*> { T* operator()(const T* first, const T* last, T* result) { //赋值操作符=是否是trivial的 typedef typename __type_traits<T>::has_trivial_assignment_operator t; return __copy_t(first, last, result, t()); } }; #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ //将[first last)区间元素复制到[result result+(last-first)) // copy 函数运用了 function overloading, type traits, partial // specialization, 无所不用其极的改善效率。 //下面还有个copy_backward,它是从后向前复制。防止两个区间 //[first last)和[result result+(last-first))可能会有重叠。 //如果一一赋值,会有覆盖,但是用memmove则不会,因为它会先将 //值拷贝下来。 template <class InputIterator, class OutputIterator> inline OutputIterator copy(InputIterator first, InputIterator last, OutputIterator result) { return __copy_dispatch<InputIterator,OutputIterator>()(first, last, result); } inline char* copy(const char* first, const char* last, char* result) { memmove(result, first, last - first); return result + (last - first); } inline wchar_t* copy(const wchar_t* first, const wchar_t* last, wchar_t* result) { memmove(result, first, sizeof(wchar_t) * (last - first)); return result + (last - first); } template <class BidirectionalIterator1, class BidirectionalIterator2> inline BidirectionalIterator2 __copy_backward(BidirectionalIterator1 first, BidirectionalIterator1 last, BidirectionalIterator2 result) { while (first != last) *--result = *--last; return result; } template <class BidirectionalIterator1, class BidirectionalIterator2> struct __copy_backward_dispatch { BidirectionalIterator2 operator()(BidirectionalIterator1 first, BidirectionalIterator1 last, BidirectionalIterator2 result) { return __copy_backward(first, last, result); } }; #ifdef __STL_CLASS_PARTIAL_SPECIALIZATION template <class T> inline T* __copy_backward_t(const T* first, const T* last, T* result, __true_type) { const ptrdiff_t N = last - first; memmove(result - N, first, sizeof(T) * N); return result - N; } template <class T> inline T* __copy_backward_t(const T* first, const T* last, T* result, __false_type) { return __copy_backward(first, last, result); } template <class T> struct __copy_backward_dispatch<T*, T*> { T* operator()(T* first, T* last, T* result) { typedef typename __type_traits<T>::has_trivial_assignment_operator t; return __copy_backward_t(first, last, result, t()); } }; template <class T> struct __copy_backward_dispatch<const T*, T*> { T* operator()(const T* first, const T* last, T* result) { typedef typename __type_traits<T>::has_trivial_assignment_operator t; return __copy_backward_t(first, last, result, t()); } }; #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ template <class BidirectionalIterator1, class BidirectionalIterator2> inline BidirectionalIterator2 copy_backward(BidirectionalIterator1 first, BidirectionalIterator1 last, BidirectionalIterator2 result) { return __copy_backward_dispatch<BidirectionalIterator1, BidirectionalIterator2>()(first, last, result); } template <class InputIterator, class Size, class OutputIterator> pair<InputIterator, OutputIterator> __copy_n(InputIterator first, Size count, OutputIterator result, input_iterator_tag) { for ( ; count > 0; --count, ++first, ++result) *result = *first; return pair<InputIterator, OutputIterator>(first, result); } template <class RandomAccessIterator, class Size, class OutputIterator> inline pair<RandomAccessIterator, OutputIterator> __copy_n(RandomAccessIterator first, Size count, OutputIterator result, random_access_iterator_tag) { RandomAccessIterator last = first + count; return pair<RandomAccessIterator, OutputIterator>(last, copy(first, last, result)); } // 以下为 SGI STL 专属,从 first 开始复制 count 个元素到 result 以后的空间。 template <class InputIterator, class Size, class OutputIterator> inline pair<InputIterator, OutputIterator> copy_n(InputIterator first, Size count, OutputIterator result) { return __copy_n(first, count, result, iterator_category(first)); } //将[first last)内所有元素改填新值value template <class ForwardIterator, class T> void fill(ForwardIterator first, ForwardIterator last, const T& value) { for ( ; first != last; ++first) // 迭代走过整个范围 *first = value; } //注意:n不能超过区间长度 template <class OutputIterator, class Size, class T> OutputIterator fill_n(OutputIterator first, Size n, const T& value) { for ( ; n > 0; --n, ++first) // 经过n个元素 *first = value; // 注意,assignment 是覆盖(overwrite)而不是插入(insert) return first; } //用于比较两个区间,指出两者之间的第一个不匹配点。返回一对迭代器,分别 //指出两个区间的不匹配点。如果都匹配,返回的是指向两个区间的last迭代器。 template <class InputIterator1, class InputIterator2> pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2) { // 以下,如果序列一走完,就结束。 // 以下,如果序列一和序列二的对应元素相等,就结束。 // 显然,区间一的元素个数必须多过序列二的元素个数,否则结果不可预期。 while (first1 != last1 && *first1 == *first2) { ++first1; ++first2; } return pair<InputIterator1, InputIterator2>(first1, first2); } template <class InputIterator1, class InputIterator2, class BinaryPredicate> pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, BinaryPredicate binary_pred) { while (first1 != last1 && binary_pred(*first1, *first2)) { ++first1; ++first2; } return pair<InputIterator1, InputIterator2>(first1, first2); } //如果两个区间在[first last)区间相等,返回true。如果第二个区间元素比较多,多出来的 //不予考虑。如果第二个区间元素少,会有不可预测的结果。因此在使用前最好判断区间大小。 template <class InputIterator1, class InputIterator2> inline bool equal(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2) { // 遍历一遍区间的元素 // 如果区间一的元素个数多过区间二的元素个数,就糟糕了。 for ( ; first1 != last1; ++first1, ++first2) if (*first1 != *first2) // 只要对应元素不相等, return false; // 就结束并返回 false。 return true; // 至此,全部相等,返回true。 } template <class InputIterator1, class InputIterator2, class BinaryPredicate> inline bool equal(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, BinaryPredicate binary_pred) { for ( ; first1 != last1; ++first1, ++first2) if (!binary_pred(*first1, *first2)) return false; return true; } //以“字典排序方式”对两个区间[first1 last1)和[first2 last2)进行比较 template <class InputIterator1, class InputIterator2> bool lexicographical_compare(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2) { // 以下,任何一个区间到达尾端,就结束。否则两个区间就相应元素一一进行比对。 for ( ; first1 != last1 && first2 != last2; ++first1, ++first2) { if (*first1 < *first2) // 第一序列元素值小于第二序列的相应元素值 return true; if (*first2 < *first1) // 第二序列元素值小于第一序列的相应元素值 return false; // 如果不符合以上两条件,表示两值相等,那就进行下一组相应元素值的比对。 } // 运行到这里,如果第一区间到达尾端而第二区间尚有余额,那么第一区间小于第二区间。 return first1 == last1 && first2 != last2; } template <class InputIterator1, class InputIterator2, class Compare> bool lexicographical_compare(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, Compare comp) { for ( ; first1 != last1 && first2 != last2; ++first1, ++first2) { if (comp(*first1, *first2)) return true; if (comp(*first2, *first1)) return false; } return first1 == last1 && first2 != last2; } inline bool lexicographical_compare(const unsigned char* first1, const unsigned char* last1, const unsigned char* first2, const unsigned char* last2) { const size_t len1 = last1 - first1; // 第一区间長度 const size_t len2 = last2 - first2; // 第二区间長度 // 先比较相同长度的一截。memcmp() 速度极快。 const int result = memcmp(first1, first2, min(len1, len2)); // 如果不相上下,则长度较长者被视为比较大。 return result != 0 ? result < 0 : len1 < len2; } inline bool lexicographical_compare(const char* first1, const char* last1, const char* first2, const char* last2) { #if CHAR_MAX == SCHAR_MAX // 转换为 const signed char* return lexicographical_compare((const signed char*) first1, (const signed char*) last1, (const signed char*) first2, (const signed char*) last2); #else // 转换为 const unsigned char* return lexicographical_compare((const unsigned char*) first1, (const unsigned char*) last1, (const unsigned char*) first2, (const unsigned char*) last2); #endif } template <class InputIterator1, class InputIterator2> int lexicographical_compare_3way(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2) { while (first1 != last1 && first2 != last2) { if (*first1 < *first2) return -1; if (*first2 < *first1) return 1; ++first1; ++first2; } if (first2 == last2) { return !(first1 == last1); } else { return -1; } } inline int lexicographical_compare_3way(const unsigned char* first1, const unsigned char* last1, const unsigned char* first2, const unsigned char* last2) { const ptrdiff_t len1 = last1 - first1; const ptrdiff_t len2 = last2 - first2; const int result = memcmp(first1, first2, min(len1, len2)); return result != 0 ? result : (len1 == len2 ? 0 : (len1 < len2 ? -1 : 1)); } inline int lexicographical_compare_3way(const char* first1, const char* last1, const char* first2, const char* last2) { #if CHAR_MAX == SCHAR_MAX return lexicographical_compare_3way( (const signed char*) first1, (const signed char*) last1, (const signed char*) first2, (const signed char*) last2); #else return lexicographical_compare_3way((const unsigned char*) first1, (const unsigned char*) last1, (const unsigned char*) first2, (const unsigned char*) last2); #endif } __STL_END_NAMESPACE #endif /* __SGI_STL_INTERNAL_ALGOBASE_H */ // Local Variables: // mode:C++ // End: