在Unix/Linux下模拟双机热备(客户端自适应方式)

在Unix/Linux下模拟双机热备(客户端自适应方式)
     最近突然对双机热备的切换的过程产生了浓厚的兴趣。晚上动手写了份代码模拟了,双机切换的过程。该模拟方式是通过客户端自适应的方式来实现。当一个客户端发现链接的服务器关闭之后,便链接备用服务器。具体描述如下:
      启两个服务器进程在3000,3001这两个端口进行监听,当有客户进程链接服务进程时,服务进程,创建一个线程与之通信。启一个客户进程,初始化客户进程链接的3000端口的服务进程,当发现3000端口的服务进程需要更新而停止的时候,客户端会去试图链接另一个端口的服务进程。如何反复,从而可以实现在不停止对客户端的正常服务情况下,并同步更新服务进程。

代码如下

客户端代码:

#include <iostream>
#include <stdlib.h>
#include "client.h"
using namespace std;

char strMsg[30] = "hello server.";
int serverPort[2] = {3000, 3001};

void InitClient(Client & client, int index)
{
	if(!client.initialize()) 
	{
		cout << "client initialize error program exit" << endl;
		exit(1);
	}

	if (!client.connection((char *)SERVER_IP, serverPort[index])) 
	{
		cout << "client connection error program exit" << endl;
		cout << "server_ip = " << SERVER_IP << endl;
		cout << "server_port = " << serverPort[index] << endl;
		exit(1);
	}
}

int main(int argc, char * argv[])
{
	int index = 0;
	Client client;
	InitClient(client, index);
	int count = 0;
	bool flag = true;
	sleep(2);
	bool out = true;
	while (1) 
	{
		if (flag) 
		{
			flag = client.recvMsg(strMsg);
		}
		if (flag) 
		{
			if (out) 
			{
				cout << "connection server" << endl;
				out = false;
			}
			sleep(2);
		}
		else 
		{
			cout << "one server port close" << endl;
			cout << "change the another server port" << endl;
			index++;
			index %= 2;
			InitClient(client, index);
			flag = true;
			out = true;
			sleep(2);
		}
	}

	return 0;
}

服务端代码:

#include <iostream>
#include <stdlib.h>
#include <pthread.h>
#include <list>
#include "adapter.h"
#include "server.h"
using namespace std;

int nNewSocketId;

void * Run(void * arg)
{
	ClientAdapter * pAdapter = (ClientAdapter *)arg;
	pAdapter->CreateClientAdapter();
}

int main(int argc, char * argv[])
{
	if (argc != 2) 
	{
		cout << "arg error!" << endl;
	}

	int listenPort = atoi(argv[1]);
	list<ClientAdapter * > vAdapter;
	pthread_t tid;
	struct sockaddr client;
	Server server;
	server.initialize();
	server.bindPort(listenPort);
	server.listenClient();
	int clientCnt = vAdapter.size();
	cout << "client count = " << clientCnt << endl;
	while (true) 
	{
		if (clientCnt != vAdapter.size()) 
		{
			cout << "client count = " << vAdapter.size() << endl;
			clientCnt = vAdapter.size();
		}
		nNewSocketId = server.acceptClient(client);
		if (nNewSocketId == -1) 
		{
			//perror("accept");
			sleep(2);
		}
		else 
		{
			ClientAdapter * pClient = new ClientAdapter();
			pClient->m_nsocketFd = nNewSocketId;
			cout << "get the client connection." << endl;
			cout << "new socketid = " << nNewSocketId << endl;
			vAdapter.push_back(pClient);
			pthread_create(&tid, NULL, Run, (void *)pClient);
			
		}

		list<ClientAdapter *>::iterator itr = vAdapter.begin();
		while (itr != vAdapter.end()) 
		{
			if ((*itr)->m_bIfCanErase) 
			{
				delete (*itr);
				vAdapter.erase(itr++);
				continue;
			}
			else 
			{
				itr++;
			}
		}
	}
	return 0;
}





client.cpp:

#include "client.h"

Client::Client() 
{
	//nothing.
}

Client::~Client() 
{
	//nothing.
}	

bool Client::initialize()
{
	m_nSocketFd = socket(AF_INET, SOCK_STREAM, 0);
	if (-1 == m_nSocketFd) 
	{
		perror("socket create");
		return false;
	}
	else 
	{
		return true;
	}
}

bool Client::connection(char * pStrServerIP, int serverPort)
{
	m_sServer.sin_family = AF_INET;
	m_sServer.sin_addr.s_addr = inet_addr(pStrServerIP);
	m_sServer.sin_port = htons(serverPort);
	if (connect(m_nSocketFd, (struct sockaddr *)&m_sServer, sizeof(m_sServer)) < 0) 
	{
		perror("connecting stream socket");
		return false;
	}
	else 
	{
		int nFlag = fcntl(m_nSocketFd,F_GETFL,0);
		fcntl(m_nSocketFd,F_SETFL,nFlag|O_NONBLOCK);
		return true;
	}
}

bool Client::recvMsg(char * pStrMsg)
{
	char buf[100];
	buf[0] = 0;
	if (recv(m_nSocketFd, buf, 100, 0) <= 0) 
	{
		return false;
	}
	return true;
}
	

server.cpp:

#include "server.h"

Server::Server() 
{
	//nothing.
}

Server::~Server()
{
	//nothing.
}

bool Server::initialize()
{
	m_nSocketFd = socket(AF_INET, SOCK_STREAM, 0);
	
	if (m_nSocketFd < 0) 
	{
		perror("opening stream socket");

		return false;
	}
	int nFlag = fcntl(m_nSocketFd,F_GETFL,0);

	fcntl(m_nSocketFd,F_SETFL,nFlag|O_NONBLOCK);

	int on = 1;
	
	setsockopt(m_nSocketFd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));

	return true;	
}

bool Server::bindPort(int nServerPort)
{
	m_sServer.sin_family = AF_INET;

	m_sServer.sin_port = htons(nServerPort);
	
	m_sServer.sin_addr.s_addr = INADDR_ANY;

	bzero(&(m_sServer.sin_zero), 8);

	if (bind(m_nSocketFd, (struct sockaddr *)&m_sServer, sizeof(m_sServer)) < 0) 
	{
		perror("binding stream socket");

		return false;
	}
	else 
	{
		return true;
	}
}

void Server::listenClient()
{
	listen(m_nSocketFd, 5);
}

int Server::acceptClient(sockaddr & clientAddr)
{
	int len = sizeof(struct sockaddr);
	return accept(m_nSocketFd, (struct sockaddr *)&clientAddr, (socklen_t *)&len);
}

adpater.cpp:

#include "adapter.h"

ClientAdapter::ClientAdapter()
{
	//nothing.
	this->m_bIfCanErase = false;
}

ClientAdapter::~ClientAdapter()
{
	//nothing.
}

void ClientAdapter::CreateClientAdapter()
{
	int rval;
	char buf[1024];
	pthread_t tid;
	tid = pthread_self();
	printf("thread id = %u\n", (unsigned int)tid);
	cout << "socket Id = " << m_nsocketFd << endl;
	while (true)
	{
		int sendLen = send(m_nsocketFd, "hello client", 20, 0);
		sleep(2);
		if (sendLen <= 0) 
		{
			printf("ending connection\n");			
			m_bIfCanErase = true;
			break;
		}
	}
}

运行结果如下:

在Unix/Linux下模拟双机热备(客户端自适应方式)_第1张图片

模拟结果分析:
       其两个服务端进程,然后启一个客户端进程。停在3000端口监听的服务端进程,此时客户端进程发现在3000端口监听的服务进程已经停止便去链接在3001端口监听的服务端进程。然后再启在3000端口监听的服务进程,停在3001端口监听的服务进程。此时客户端进程发现在3001端口监听的服务进程已经停止便去链接在3000端口监听的服务端进程

你可能感兴趣的:(在Unix/Linux下模拟双机热备(客户端自适应方式))