在Unix/Linux下模拟双机热备(客户端自适应方式)
最近突然对双机热备的切换的过程产生了浓厚的兴趣。晚上动手写了份代码模拟了,双机切换的过程。该模拟方式是通过客户端自适应的方式来实现。当一个客户端发现链接的服务器关闭之后,便链接备用服务器。具体描述如下:
启两个服务器进程在3000,3001这两个端口进行监听,当有客户进程链接服务进程时,服务进程,创建一个线程与之通信。启一个客户进程,初始化客户进程链接的3000端口的服务进程,当发现3000端口的服务进程需要更新而停止的时候,客户端会去试图链接另一个端口的服务进程。如何反复,从而可以实现在不停止对客户端的正常服务情况下,并同步更新服务进程。
代码如下
客户端代码:
#include <iostream>
#include <stdlib.h>
#include "client.h"
using namespace std;
char strMsg[30] = "hello server.";
int serverPort[2] = {3000, 3001};
void InitClient(Client & client, int index)
{
if(!client.initialize())
{
cout << "client initialize error program exit" << endl;
exit(1);
}
if (!client.connection((char *)SERVER_IP, serverPort[index]))
{
cout << "client connection error program exit" << endl;
cout << "server_ip = " << SERVER_IP << endl;
cout << "server_port = " << serverPort[index] << endl;
exit(1);
}
}
int main(int argc, char * argv[])
{
int index = 0;
Client client;
InitClient(client, index);
int count = 0;
bool flag = true;
sleep(2);
bool out = true;
while (1)
{
if (flag)
{
flag = client.recvMsg(strMsg);
}
if (flag)
{
if (out)
{
cout << "connection server" << endl;
out = false;
}
sleep(2);
}
else
{
cout << "one server port close" << endl;
cout << "change the another server port" << endl;
index++;
index %= 2;
InitClient(client, index);
flag = true;
out = true;
sleep(2);
}
}
return 0;
}
服务端代码:
#include <iostream>
#include <stdlib.h>
#include <pthread.h>
#include <list>
#include "adapter.h"
#include "server.h"
using namespace std;
int nNewSocketId;
void * Run(void * arg)
{
ClientAdapter * pAdapter = (ClientAdapter *)arg;
pAdapter->CreateClientAdapter();
}
int main(int argc, char * argv[])
{
if (argc != 2)
{
cout << "arg error!" << endl;
}
int listenPort = atoi(argv[1]);
list<ClientAdapter * > vAdapter;
pthread_t tid;
struct sockaddr client;
Server server;
server.initialize();
server.bindPort(listenPort);
server.listenClient();
int clientCnt = vAdapter.size();
cout << "client count = " << clientCnt << endl;
while (true)
{
if (clientCnt != vAdapter.size())
{
cout << "client count = " << vAdapter.size() << endl;
clientCnt = vAdapter.size();
}
nNewSocketId = server.acceptClient(client);
if (nNewSocketId == -1)
{
//perror("accept");
sleep(2);
}
else
{
ClientAdapter * pClient = new ClientAdapter();
pClient->m_nsocketFd = nNewSocketId;
cout << "get the client connection." << endl;
cout << "new socketid = " << nNewSocketId << endl;
vAdapter.push_back(pClient);
pthread_create(&tid, NULL, Run, (void *)pClient);
}
list<ClientAdapter *>::iterator itr = vAdapter.begin();
while (itr != vAdapter.end())
{
if ((*itr)->m_bIfCanErase)
{
delete (*itr);
vAdapter.erase(itr++);
continue;
}
else
{
itr++;
}
}
}
return 0;
}
client.cpp:
#include "client.h"
Client::Client()
{
//nothing.
}
Client::~Client()
{
//nothing.
}
bool Client::initialize()
{
m_nSocketFd = socket(AF_INET, SOCK_STREAM, 0);
if (-1 == m_nSocketFd)
{
perror("socket create");
return false;
}
else
{
return true;
}
}
bool Client::connection(char * pStrServerIP, int serverPort)
{
m_sServer.sin_family = AF_INET;
m_sServer.sin_addr.s_addr = inet_addr(pStrServerIP);
m_sServer.sin_port = htons(serverPort);
if (connect(m_nSocketFd, (struct sockaddr *)&m_sServer, sizeof(m_sServer)) < 0)
{
perror("connecting stream socket");
return false;
}
else
{
int nFlag = fcntl(m_nSocketFd,F_GETFL,0);
fcntl(m_nSocketFd,F_SETFL,nFlag|O_NONBLOCK);
return true;
}
}
bool Client::recvMsg(char * pStrMsg)
{
char buf[100];
buf[0] = 0;
if (recv(m_nSocketFd, buf, 100, 0) <= 0)
{
return false;
}
return true;
}
server.cpp:
#include "server.h"
Server::Server()
{
//nothing.
}
Server::~Server()
{
//nothing.
}
bool Server::initialize()
{
m_nSocketFd = socket(AF_INET, SOCK_STREAM, 0);
if (m_nSocketFd < 0)
{
perror("opening stream socket");
return false;
}
int nFlag = fcntl(m_nSocketFd,F_GETFL,0);
fcntl(m_nSocketFd,F_SETFL,nFlag|O_NONBLOCK);
int on = 1;
setsockopt(m_nSocketFd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));
return true;
}
bool Server::bindPort(int nServerPort)
{
m_sServer.sin_family = AF_INET;
m_sServer.sin_port = htons(nServerPort);
m_sServer.sin_addr.s_addr = INADDR_ANY;
bzero(&(m_sServer.sin_zero), 8);
if (bind(m_nSocketFd, (struct sockaddr *)&m_sServer, sizeof(m_sServer)) < 0)
{
perror("binding stream socket");
return false;
}
else
{
return true;
}
}
void Server::listenClient()
{
listen(m_nSocketFd, 5);
}
int Server::acceptClient(sockaddr & clientAddr)
{
int len = sizeof(struct sockaddr);
return accept(m_nSocketFd, (struct sockaddr *)&clientAddr, (socklen_t *)&len);
}
adpater.cpp:
#include "adapter.h"
ClientAdapter::ClientAdapter()
{
//nothing.
this->m_bIfCanErase = false;
}
ClientAdapter::~ClientAdapter()
{
//nothing.
}
void ClientAdapter::CreateClientAdapter()
{
int rval;
char buf[1024];
pthread_t tid;
tid = pthread_self();
printf("thread id = %u\n", (unsigned int)tid);
cout << "socket Id = " << m_nsocketFd << endl;
while (true)
{
int sendLen = send(m_nsocketFd, "hello client", 20, 0);
sleep(2);
if (sendLen <= 0)
{
printf("ending connection\n");
m_bIfCanErase = true;
break;
}
}
}
运行结果如下:
模拟结果分析:
其两个服务端进程,然后启一个客户端进程。停在3000端口监听的服务端进程,此时客户端进程发现在3000端口监听的服务进程已经停止便去链接在3001端口监听的服务端进程。然后再启在3000端口监听的服务进程,停在3001端口监听的服务进程。此时客户端进程发现在3001端口监听的服务进程已经停止便去链接在3000端口监听的服务端进程