Original url:
http://www.tuicool.com/articles/b6BjAva
1. 马尔可夫模型的几类子模型
我想大家一定听说过马尔科夫链(Markov Chain), 搞机器学习的也都知 道隐马尔可夫模型(Hidden Markov Model,HMM)。它们具有的一个共同性质就是马尔可夫性(无后效性),也就是指系统 的下个状态只与当前状态信息有关,而与更早之前的状态无关。
马尔可夫决策过程(MDP)也具有马尔可夫性,与上面不同的是MDP考虑了动作,即系统下个状态不仅和当前的状态有关,也和当前采取的动作有关。还是举下棋的例子,当我们在某个局面(状态s)走了一步(动作a),这时对手的选择(导致下个状态s’)我们是不能确定的,但是他的选择只和s和a有关,而不用考虑更早之前的状态和动作,即s’是根据s和a随机生成的。
我们用一个二维表格表示一下,各种马尔可夫子模型的关系就很清楚了:
不考虑动作 | 考虑动作 | |
状态完全可见 | 马尔科夫链(MC) | 马尔可夫决策过程(MDP) |
状态不完全可见 | 隐马尔可夫模型(HMM) | 不完全可观察马尔可夫决策过程(POMDP) |
2. 马尔可夫决策过程
一个马尔可夫决策过程由一个四元组构成(S, A, P sa , R) [ 注]
MDP 的动态过程如下:某个智能体(agent)的初始状态为s 0 ,然后从 A 中挑选一个动作a 0 执行,执行后,agent 按P sa 概率随机转移到了下一个s 1 状态,s 1 ∈ P s 0a 0。然后再执行一个动作a 1 ,就转移到了s 2 ,接下来再执行a 2 …,我们可以用下面的图表示状态转移的过程。
如果回报r是根据状态s和动作a得到的,则MDP还可以表示成下图:
3. 值函数(value function)与贝尔曼方程(Bellman equation)
上篇我们提到增强学习学到的是一个从环境状态到动作的映射(即行为策略),记为策略π: S→A。而增强学习往往又具有延迟回报的特点: 如果在第n步输掉了棋,那么只有状态s n 和动作a n 获得了立即回报r(s n ,a n )=-1,前面的所有状态立即回报均为0。所以对于之前的任意状态s和动作a,立即回报函数r(s,a)无法说明策略的好坏。因而需要定义值函数(value function,又叫效用函数)来表明当前状态下策略π的长期影响。
常见的值函数有以下三种:
其中
a)是采用策略π的情况下未来有限h步的期望立即回报总和;
b)是采用策略π的情况下期望的平均回报;
c)是值函数最常见的形式,式中γ∈[0,1]称为折合因子,表明了未来的回报相对于当前回报的重要程度。特别的,γ=0时,相当于只考虑立即不考虑长期回报,γ=1时,将长期回报和立即回报看得同等重要。接下来我们主要讨论的是第三种形式
定义状态值函数(值函数)如下:
定义动作值函数(Q函数)如下:
根据动态规划相关理论,给定MDP模型M=(S, A, P, γ, R)和策略π:S→A,则状态值函数V π 和动作值函数Q π 满足以下的贝尔曼方程:
而最优策略可以由下式表示:
即我们寻找的是在任意初始条件s下,能够最大化值函数的策略π*。
与最优策略π*对应的状态值函数V*与动作值函数Q*之间存在如下关系:
4. 立即回报,(状态)值函数,Q函数的例子
上面的概念可能描述得不太清晰,接下来举例说明,如图所示是一个格子世界,我们假设agent从左下角的start点出发,右上角为目标位置,称为吸收状态(Absorbing state),对于进入吸收态的动作,我们给予立即回报100,对其他动作则给予0回报,折合因子γ的值我们选择0.9。
1.立即回报r(s,a)如下所示,每个格子代表一个状态s,箭头则代表动作a,旁边的数字代表立即回报,可以看到只有进入目标位置的动作获得了回报100,其他动作都获得了0回报。
2. Q(s,a)值如下所示
至此我们了解了马尔可夫决策过程的基本概念,知道了增强学习的目标(获得最佳策略π*),下一篇开始介绍求解最优策略的方法。
发现写东西还是蛮辛苦的,希望对大家有用。另外自己也比较菜,没写对的地方欢迎指出哈~~
[注]采用折合因子作为值函数的MDP也可以定义为五元组M=(S, A, P, γ, R)。也有的书上把值函数作为一个因子定义五元组。还有定义为三元组的,不过MDP的基本组成元素是不变的。
参考资料:
[1] R.Sutton et al. Reinforcement learning: An introduction , 1998
[2] T.Mitchell. 《机器学习》,2003
[3] 金卓军,逆向增强学习和示教学习算法研究及其在智能机器人中的应用[D],2011
[4] Oliver Sigaud et al,Markov Decision Process in Artificial Intelligence[M], 2010