设X,Y,Z是关系R中互不相同的属性集合,存在X→Y(Y !→X),Y→Z,则称Z传递函数依赖于X。
函数依赖的说明
1. 函数依赖不是指关系模式R的某个或某些关系实例满足的约束条件,而是指R的所有关系实例均要满足的约束条件。
2. 函数依赖是语义范畴的概念。只能根据数据的语义来确定函数依赖。
例如“姓名→年龄”这个函数依赖只有在不允许有同名人的条件下成立
3. 数据库设计者可以对现实世界作强制的规定。例如规定不允许同名人出现,函数依赖“姓名→年龄”成立。所插入的元组必须满足规定的函数依赖,若发现有同名人存在, 则拒绝装入该元组。
属性之间有三种关系,但并不是每一种关系都存在函数依赖。设R(U)是属性集U上的关系模式,X、Y是U的子集:
● 如果X和Y之间是1:1关系(一对一关系),如学校和校长之间就是1:1关系,则存在函数依赖X → Y和Y →X。
● 如果X和Y之间是1:n关系(一对多关系),如年龄和姓名之间就是1:n关系,则存在函数依赖Y → X。
●如果X和Y之间是m:n关系(多对多关系),如学生和课程之间就是m:n关系,则X和Y之间不存在函数依赖。
例: Student(Sno, Sname, Ssex, Sage, Sdept)
假设不允许重名,则有:
Sno → Ssex, Sno → Sage , Sno → Sdept,
Sno ←→ Sname, Sname → Ssex, Sname → Sage
Sname → Sdept
但Ssex -\→ Sage
若 X → Y,并且 Y → X, 则记为 X ←→ Y。
若 Y 不函数依赖于 X, 则记为 X -\→ Y。
在关系模式R(U)中,对于U的子集X和Y,
1.如果 X → Y,但 Y 不为 X 的子集,则称 X → Y 是非平凡的函数依赖
例:在关系SC(Sno, Cno, Grade)中,
非平凡函数依赖: (Sno, Cno) → Grade
2.若 X → Y,但 Y 为 X 的子集, 则称 X → Y 是平凡的函数依赖
平凡函数依赖: (Sno, Cno) → Sno ,(Sno, Cno) → Cno
3.若 x → y 并且,存在 x 的真子集 x1,使得 x1 → y, 则 y 部分依赖于 x。
例:学生表(学号,姓名,性别,班级,年龄)关系中,
部分函数依赖:(学号,姓名)→ 性别,学号 → 性别,所以(学号,姓名)→ 性别 是部分函数依赖
4.若 x → y 并且,对于 x 的任何一个真子集 x1,都不存在 x1 → y 则称y完全依赖于x。
例:成绩表(学号,课程号,成绩)关系中,
完全函数依赖:(学号,课程号)→ 成绩,学号 -\→ 成绩,课程号 -\→ 成绩,所以(学号,课程号)→ 成绩 是完全函数依赖
5.若x → y并且y → z,而y -\→ x,则有x → z,称这种函数依赖为传递函数依赖。
例:关系S1(学号,系名,系主任),
学号 → 系名,系名 → 系主任,并且 系名 -\→ 学号,所以 学号 → 系主任 为传递函数依赖