大致题意:
给出一个长度为n的字符串,再给出一个数字k。求出现至少k次的子串中长度最大是多少,注:可覆盖。
大致思路:
后缀数组+二分判定……水水。
#include<iostream> #include<cstdio> #include<cstring> using namespace std; const int nMax =1000012; int num[nMax]; int sa[nMax], rank[nMax], height[nMax]; int wa[nMax], wb[nMax], wv[nMax], wd[nMax]; int cmp(int *r, int a, int b, int l){ return r[a] == r[b] && r[a+l] == r[b+l]; } void da(int *r, int n, int m){ // 倍增算法 r为待匹配数组 n为总长度 m为字符范围 int i, j, p, *x = wa, *y = wb, *t; for(i = 0; i < m; i ++) wd[i] = 0; for(i = 0; i < n; i ++) wd[x[i]=r[i]] ++; for(i = 1; i < m; i ++) wd[i] += wd[i-1]; for(i = n-1; i >= 0; i --) sa[-- wd[x[i]]] = i; for(j = 1, p = 1; p < n; j *= 2, m = p){ for(p = 0, i = n-j; i < n; i ++) y[p ++] = i; for(i = 0; i < n; i ++) if(sa[i] >= j) y[p ++] = sa[i] - j; for(i = 0; i < n; i ++) wv[i] = x[y[i]]; for(i = 0; i < m; i ++) wd[i] = 0; for(i = 0; i < n; i ++) wd[wv[i]] ++; for(i = 1; i < m; i ++) wd[i] += wd[i-1]; for(i = n-1; i >= 0; i --) sa[-- wd[wv[i]]] = y[i]; for(t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i ++){ x[sa[i]] = cmp(y, sa[i-1], sa[i], j) ? p - 1: p ++; } } } void calHeight(int *r, int n){ // 求height数组。 int i, j, k = 0; for(i = 1; i <= n; i ++) rank[sa[i]] = i; for(i = 0; i < n; height[rank[i ++]] = k){ for(k ? k -- : 0, j = sa[rank[i]-1]; r[i+k] == r[j+k]; k ++); } } int loc[nMax],m; char str[nMax],res[nMax]; bool vis[1004]; int abs(int a){if(a>0)return a;return -a;} bool check(int mid,int len,int k){ //长度为mid的子串是否出现了k次 int i,j,tot=0; for(i=2;i<=len;i++){ if(height[i]<mid)tot=0; else{ tot++; if(tot==k-1)return 1; } } return 0; } int main(){ int i,j,n,ans,k; while(scanf("%d%d",&n,&k)!=EOF){ ans=0; for(i=0;i<n;i++){ scanf("%d",&num[i]); num[i]++; } num[n]=0; da(num,n+1,1000002); calHeight(num,n); int left=0,right=n,mid;//开始二分 while(right>=left){ mid=(right+left)/2; if(check(mid,n,k)){ left=mid+1; ans=mid; } else{ right=mid-1; } } printf("%d\n",ans); } return 0; }