spark内核揭秘-09-RDD的count操作 触发Job全生命周期-02

接着上一篇文章继续分析代码:

3.1.3.3.3.1、进入TaskSet 方法:


3.1.3.3.3.2、进入taskScheduler.submitTasks(new TaskSet(tasks.toArray, stage.id, stage.newAttemptId(), stage.jobId, properties)) 方法:



从源代码中可以看出DAGScheduler中向TaskScheduler以Stage为单位提交任务,Stage是以TaskSet为单位的,构建一个TaskSetManager,当isLocal=false(集群模式)& hasReceivedTask=false(没启动的),将会创建一个定时任务来监控worker集群是否启动,并且是15000毫秒后启动,并间隔15000毫秒继续循环运行

3.1.3.3.3.3、进入 backend.reviveOffers() 方法:


该方法是 CoarseGrainedSchedulerBackend的方法,此时会向driverActor发送ReviveOffers消息,driverActor的实现代码如下:


此时跟踪进DriverActor的实现中:




spark内核揭秘-09-RDD的count操作 触发Job全生命周期-02_第1张图片

spark内核揭秘-09-RDD的count操作 触发Job全生命周期-02_第2张图片

可以看到ReviveOffers消息的具体实现是makeOffers方法:

spark内核揭秘-09-RDD的count操作 触发Job全生命周期-02_第3张图片

WorkerOffer对象代表是某个Executor上可用的资源,freeCores(id)是该executor上空余的CPU数目:


进入launchTasks:

spark内核揭秘-09-RDD的count操作 触发Job全生命周期-02_第4张图片

spark内核揭秘-09-RDD的count操作 触发Job全生命周期-02_第5张图片

executorActor发送启动Task的请求,其实是向CoarseGrainedExecutorBackend发送LaunchTask消息:

spark内核揭秘-09-RDD的count操作 触发Job全生命周期-02_第6张图片

spark内核揭秘-09-RDD的count操作 触发Job全生命周期-02_第7张图片



在LaunchTask消息中会导致executor.lauchTask(this, taskDesc.taskId, taskDesc.name, taskDesc.serializedTask)的调用:

spark内核揭秘-09-RDD的count操作 触发Job全生命周期-02_第8张图片

其中的TaskRunner封装了任务本身:

spark内核揭秘-09-RDD的count操作 触发Job全生命周期-02_第9张图片


任务执行的是交给了线程池去执行的。 其实这些代码已经分析过了,在之前的博客中

我们在回到SparkContext:

spark内核揭秘-09-RDD的count操作 触发Job全生命周期-02_第10张图片

4、进入progressBar.foreach(_.finishAll())方法:


5、进入rdd.doCheckpoint()方法

spark内核揭秘-09-RDD的count操作 触发Job全生命周期-02_第11张图片

进入checkpointData.get.doCheckpoint()方法:


spark内核揭秘-09-RDD的count操作 触发Job全生命周期-02_第12张图片

spark内核揭秘-09-RDD的count操作 触发Job全生命周期-02_第13张图片


你可能感兴趣的:(taskset,reviveOffers,DriverActor,launchTasks,WorkerOffer)