"I have not failed. I've just found 10,000 ways that won't work." |
Thomas Edison
Do you know how to compute the mean (or average) of n numbers? Well, that's not good enough for me. I want the supermean! "What's a supermean," you ask? I'll tell you. List the n given numbers in non-decreasing order. Now compute the average of each pair of adjacent numbers. This will give you n - 1 numbers listed in non-decreasing order. Repeat this process on the new list of numbers until you are left with just one number - the supermean. I tried writing a program to do this, but it's too slow. :-( Can you help me?
Input
The first line of input gives the number of cases, N. N test cases follow. Each one starts with a line containing n(0<n<=50000). The next line will contain the n input numbers, each one between -1000 and 1000, in non-decreasing order.
Output
For each test case, output one line containing "Case #x:" followed by the supermean, rounded to 3 fractional digits.
Sample Input | Sample Output |
4 1 10.4 2 1.0 2.2 3 1 2 3 5 1 2 3 4 5 |
Case #1: 10.400 Case #2: 1.600 Case #3: 2.000 Case #4: 3.000 |
解题报告: 本人自己WA了好几次,然后看解题报告的。实在很难想到用对数。
公式很容易推出来,每一项为C(n-1, i)*a[i]/2^(n-1)。难点在于n很大,以至于C(n-1, i)和2^(n-1)都很大,无法直接计算。
方法呢也很简单,先用对数处理,再做幂运算还原。对数可以递推。
代码可以改进,可以不开数组,也不用每次都计算log10(2^(n-1)),懒得改了,代码如下:
#include <cstdio> #include <algorithm> #include <cstring> #include <cmath> using namespace std; const int maxn = 55555; double c[maxn], a[maxn]; int cas=1; void work() { int n; scanf("%d",&n); for(int i=0;i<n;i++) scanf("%lf",a+i); c[0]=0; for(int i=1;i<n;i++) c[i]=c[i-1]+log10(n-i)-log10(i); double ans=0; for(int i=0;i<n;i++) ans+=pow(10.0, c[i]-(n-1)*log10(2))*a[i]; printf("Case #%d: %.3lf\n", cas++, ans); } int main() { int T; scanf("%d",&T); while(T--) work(); }