作为遗传算法生物背景的介绍,下面内容了解即可:
种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。
个体:组成种群的单个生物。
基因 ( Gene ) :一个遗传因子。
染色体 ( Chromosome ) :包含一组的基因。
生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。适应度低的个体参与繁殖的机会比较少,后代就会越来越少。
遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。
简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变 ( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。
借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。这样进化N代后就很有可能会进化出适应度函数值很高的个体。
举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取) ;首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。
编码:需要将问题的解编码成字符串的形式才能使用遗传算法。最简单的一种编码方式是二进制编码,即将问题的解编码成二进制位数组的形式。例如,问题的解是整数,那么可以将其编码成二进制位数组的形式。将0-1字符串作为0-1背包问题的解就属于二进制编码。
遗传算法有3个最基本的操作:选择,交叉,变异。
选择:选择一些染色体来产生下一代。一种常用的选择策略是 “比例选择”,也就是个体被选中的概率与其适应度函数值成正比。假设群体的个体总数是M,那么那么一个体Xi被选中的概率为f(Xi)/( f(X1) + f(X2) + …….. + f(Xn) ) 。比例选择实现算法就是所谓的“轮盘赌算法”( Roulette Wheel Selection ) ,轮盘赌算法的一个简单的实现如下:
轮盘赌算法 /* * 按设定的概率,随机选中一个个体 * P[i]表示第i个个体被选中的概率 */ int RWS() { m = 0; r =Random(0,1); //r为0至1的随机数 for(i=1;i<=N; i++) { /* 产生的随机数在m~m+P[i]间则认为选中了i * 因此i被选中的概率是P[i] */ m = m + P[i]; if(r<=m) return i; } }
交叉(Crossover):2条染色体交换部分基因,来构造下一代的2条新的染色体。例如:
交叉前:
00000|011100000000|10000
11100|000001111110|00101
交叉后:
00000|000001111110|10000
11100|011100000000|00101
染色体交叉是以一定的概率发生的,这个概率记为Pc 。
变异(Mutation):在繁殖过程,新产生的染色体中的基因会以一定的概率出错,称为变异。变异发生的概率记为Pm 。例如:
变异前:
000001110000000010000
变异后:
000001110000100010000
适应度函数 ( Fitness Function ):用于评价某个染色体的适应度,用f(x)表示。有时需要区分染色体的适应度函数与问题的目标函数。例如:0-1背包问题的目标函数是所取得物品价值,但将物品价值作为染色体的适应度函数可能并不一定适合。适应度函数与目标函数是正相关的,可对目标函数作一些变形来得到适应度函数。
三.基本遗传算法的代码
说明:求取x[1]^2-x[1]*x[2]+x[3]的最大值,工程下的gadata.txt里面每一行分别代表x[1]、x[2]和x[3]的范围,输出结果在工程下的galog.txt里面。初始种群规模、最大迭代次数、交叉概率、变异概率等详见代码。
/**************************************************************************/ /* This is a simple genetic algorithm implementation where the */ /* evaluation function takes positive values only and the */ /* fitness of an individual is the same as the value of the */ /* objective function */ /**************************************************************************/ #include <stdio.h> #include <stdlib.h> #include <math.h> /* Change any of these parameters to match your needs */ #define POPSIZE 50 /* population size */ #define MAXGENS 1000 /* max. number of generations */ #define NVARS 3 /* no. of problem variables */ //gadata.txt中有3行数据,可以给定3组不同范围的数据 #define PXOVER 0.8 /* probability of crossover */ #define PMUTATION 0.15 /* probability of mutation */ #define TRUE 1 #define FALSE 0 int generation; /* current generation no. */ int cur_best; /* best individual */ FILE *galog; /* an output file */ struct genotype /* genotype (GT), a member of the population */ { double gene[NVARS]; /* a string of variables */ double fitness; /* GT's fitness */ double upper[NVARS]; /* GT's variables upper bound */ double lower[NVARS]; /* GT's variables lower bound */ double rfitness; /* relative fitness */ double cfitness; /* cumulative fitness */ }; struct genotype population[POPSIZE+1]; /* population */ struct genotype newpopulation[POPSIZE+1]; /* new population; */ /* replaces the */ /* old generation */ /* Declaration of procedures used by this genetic algorithm */ void initialize(void); double randval(double, double); void evaluate(void); void keep_the_best(void); void elitist(void); void select(void); void crossover(void); void Xover(int,int); void swap(double *, double *); void mutate(void); void report(void); /***************************************************************/ /* Initialization function: Initializes the values of genes */ /* within the variables bounds. It also initializes (to zero) */ /* all fitness values for each member of the population. It */ /* reads upper and lower bounds of each variable from the */ /* input file `gadata.txt'. It randomly generates values */ /* between these bounds for each gene of each genotype in the */ /* population. The format of the input file `gadata.txt' is */ /* var1_lower_bound var1_upper bound */ /* var2_lower_bound var2_upper bound ... */ /***************************************************************/ void initialize(void) { FILE *infile; int i, j; double lbound, ubound; if ((infile = fopen("gadata.txt","r"))==NULL) { fprintf(galog,"\nCannot open input file!\n"); exit(1); } /* initialize variables within the bounds */ for (i = 0; i < NVARS; i++) { fscanf(infile, "%lf",&lbound); fscanf(infile, "%lf",&ubound); for (j = 0; j < POPSIZE; j++) { population[j].fitness = 0; population[j].rfitness = 0; population[j].cfitness = 0; population[j].lower[i] = lbound; population[j].upper[i]= ubound; population[j].gene[i] = randval(population[j].lower[i],population[j].upper[i]); } } fclose(infile); } /***********************************************************/ /* Random value generator: Generates a value within bounds */ /***********************************************************/ double randval(double low, double high) { double val; val = ((double)(rand()%1000)/1000.0)*(high - low) + low; return(val); } /*************************************************************/ /* Evaluation function: This takes a user defined function. */ /* Each time this is changed, the code has to be recompiled. */ /* The current function is: x[1]^2-x[1]*x[2]+x[3] */ /*************************************************************/ void evaluate(void) { int mem; int i; double x[NVARS+1]; for (mem = 0; mem < POPSIZE; mem++) { for (i = 0; i < NVARS; i++) x[i+1] = population[mem].gene[i]; population[mem].fitness = (x[1]*x[1]) - (x[1]*x[2]) + x[3]; //利用自定义函数求适应度 } } /***************************************************************/ /* Keep_the_best function: This function keeps track of the */ /* best member of the population. Note that the last entry in */ /* the array Population holds a copy of the best individual */ /***************************************************************/ void keep_the_best() { int mem; int i; cur_best = 0; /* stores the index of the best individual */ for (mem = 0; mem < POPSIZE; mem++) { if (population[mem].fitness > population[POPSIZE].fitness) { cur_best = mem; population[POPSIZE].fitness = population[mem].fitness; //population[50]存放最好的fitness } } /* once the best member in the population is found, copy the genes */ for (i = 0; i < NVARS; i++) population[POPSIZE].gene[i] = population[cur_best].gene[i]; //population[50]存放最好的gene } /****************************************************************/ /* Elitist function: The best member of the previous generation */ /* is stored as the last in the array. If the best member of */ /* the current generation is worse then the best member of the */ /* previous generation, the latter one would replace the worst */ /* member of the current population */ /****************************************************************/ void elitist() { int i; double best, worst; /* best and worst fitness values */ int best_mem, worst_mem; /* indexes of the best and worst member */ best = population[0].fitness; worst = population[0].fitness; for (i = 0; i < POPSIZE - 1; ++i) { if(population[i].fitness > population[i+1].fitness) { if (population[i].fitness >= best) { best = population[i].fitness; best_mem = i; } if (population[i+1].fitness <= worst) { worst = population[i+1].fitness; worst_mem = i + 1; } } else { if (population[i].fitness <= worst) { worst = population[i].fitness; worst_mem = i; } if (population[i+1].fitness >= best) { best = population[i+1].fitness; best_mem = i + 1; } } } /* if best individual from the new population is better than */ /* the best individual from the previous population, then */ /* copy the best from the new population; else replace the */ /* worst individual from the current population with the */ /* best one from the previous generation */ if (best >= population[POPSIZE].fitness) { for (i = 0; i < NVARS; i++) population[POPSIZE].gene[i] = population[best_mem].gene[i]; population[POPSIZE].fitness = population[best_mem].fitness; } else { for (i = 0; i < NVARS; i++) population[worst_mem].gene[i] = population[POPSIZE].gene[i]; population[worst_mem].fitness = population[POPSIZE].fitness; } } /**************************************************************/ /* Selection function: Standard proportional selection for */ /* maximization problems incorporating elitist model - makes */ /* sure that the best member survives */ /**************************************************************/ void select(void) { int mem, i,j; double sum = 0; double p; /* find total fitness of the population */ for (mem = 0; mem < POPSIZE; mem++) { sum += population[mem].fitness; } /* calculate relative fitness */ for (mem = 0; mem < POPSIZE; mem++) { population[mem].rfitness = population[mem].fitness/sum; //计算相对fitness } /* calculate cumulative fitness */ population[0].cfitness = population[0].rfitness; for (mem = 1; mem < POPSIZE; mem++) { population[mem].cfitness = population[mem-1].cfitness + population[mem].rfitness; //计算累计fitness } /* finally select survivors using cumulative fitness. */ for (i = 0; i < POPSIZE; i++) { p = rand()%1000/1000.0; if (p < population[0].cfitness) newpopulation[i] = population[0]; else { for (j = 0; j < POPSIZE;j++) if (p >= population[j].cfitness && p<population[j+1].cfitness) newpopulation[i] = population[j+1]; } } /* once a new population is created, copy it back */ for (i = 0; i < POPSIZE; i++) population[i] = newpopulation[i]; } /***************************************************************/ /* Crossover selection: selects two parents that take part in */ /* the crossover. Implements a single point crossover */ /***************************************************************/ void crossover(void) { int mem, one; int first = 0; /* count of the number of members chosen */ double x; for (mem = 0; mem < POPSIZE; ++mem) { x = rand()%1000/1000.0; if (x < PXOVER) { ++first; if (first % 2 == 0) Xover(one, mem); else one = mem; } } } /**************************************************************/ /* Crossover: performs crossover of the two selected parents. */ /**************************************************************/ void Xover(int one, int two) { int i; int point; /* crossover point */ /* select crossover point */ if(NVARS > 1) { if(NVARS == 2) point = 1; else point = (rand() % (NVARS - 1)) + 1; for (i = 0; i < point; i++) swap(&population[one].gene[i], &population[two].gene[i]); } } /*************************************************************/ /* Swap: A swap procedure that helps in swapping 2 variables */ /*************************************************************/ void swap(double *x, double *y) { double temp; temp = *x; *x = *y; *y = temp; } /**************************************************************/ /* Mutation: Random uniform mutation. A variable selected for */ /* mutation is replaced by a random value between lower and */ /* upper bounds of this variable */ /**************************************************************/ void mutate(void) { int i, j; double lbound, hbound; double x; for (i = 0; i < POPSIZE; i++) for (j = 0; j < NVARS; j++) { x = rand()%1000/1000.0; if (x < PMUTATION) { /* find the bounds on the variable to be mutated */ lbound = population[i].lower[j]; hbound = population[i].upper[j]; population[i].gene[j] = randval(lbound, hbound); } } } /***************************************************************/ /* Report function: Reports progress of the simulation. Data */ /* dumped into the output file are separated by commas */ /***************************************************************/ void report(void) { int i; double best_val; /* best population fitness */ double avg; /* avg population fitness */ double stddev; /* std. deviation of population fitness */ //偏离、越轨 double sum_square; /* sum of square for std. calc */ double square_sum; /* square of sum for std. calc */ double sum; /* total population fitness */ sum = 0.0; sum_square = 0.0; for (i = 0; i < POPSIZE; i++) { sum += population[i].fitness; //fitness之和 sum_square += population[i].fitness * population[i].fitness; //fitness的平方和 } avg = sum/(double)POPSIZE; square_sum = avg * avg * POPSIZE; stddev = sqrt((sum_square - square_sum)/(POPSIZE - 1)); best_val = population[POPSIZE].fitness; //最大的fitness fprintf(galog, "\n%5d, %6.3f, %6.3f, %6.3f \n\n", generation, best_val, avg, stddev); } /**************************************************************/ /* Main function: Each generation involves selecting the best */ /* members, performing crossover & mutation and then */ /* evaluating the resulting population, until the terminating */ /* condition is satisfied */ /**************************************************************/ void main(void) { int i; if ((galog = fopen("galog.txt","w"))==NULL) { exit(1); } generation = 0; fprintf(galog, "\n generation best average standard \n"); fprintf(galog, " number value fitness deviation \n"); //前期三步曲 initialize(); evaluate(); keep_the_best(); //迭代筛选 while(generation<MAXGENS) { generation++; select(); crossover(); mutate(); report(); //输出 evaluate(); //更新适应度 elitist(); } fprintf(galog,"\n\n Simulation completed\n"); fprintf(galog,"\n Best member: \n"); for (i = 0; i < NVARS; i++) { fprintf (galog,"\n var(%d) = %3.3f",i,population[POPSIZE].gene[i]); } fprintf(galog,"\n\n Best fitness = %3.3f",population[POPSIZE].fitness); fclose(galog); printf("Success\n"); } /***************************************************************/
四.基本遗传算法优化
精英主义选择:是基本遗传算法的一种优化。为了防止进化过程中产生的最优解被交叉和变异所破坏,可以将每一代中的最优解原封不动的复制到下一代中。
插入操作:可在3个基本操作的基础上增加一个插入操作。插入操作将染色体中的某个随机的片段移位到另一个随机的位置。