近来,有不少人咨询我关于VIBE算法的问题,而且对于有些细节问题懵懵懂懂,索要源码类的,考虑这个算法的应用以及很多人对此有比较深的兴趣,遂将其放在博客上供大家学习。该版本的代码是在学校的时候写的,里面也加入了一些其他的后处理内容,尽管还有不足,但是对于加深对VIBE算法的理解肯定有一定帮助。另外,由于最新版本的代码在公司电脑上,不便提供。关于理论方面的请参考下面二篇文章:
1)VIBE-A powerful random technique to estimatie the background in video sequences.
2) VIBE-A universal background subtraction algorithms for video sequences
VIBE的头文件Vibe.hpp如下:
#pragma once #include "stdafx.h" #define WINSIZE 3 class Vibe { public: Vibe(void); Vibe(IplImage *img); void SetMinMatch(int nthreshold){g_MinMatch=nthreshold;} void SetRadius(int radius){g_Radius=radius;} void SetSampleNum(int num){g_SampleNum=num;} void SetThreshold(double t){g_threshold=t;} IplImage* GetForeground(){return g_ForeImg;} IplImage* GetSegMask(){return g_SegementMask;} void Detect(IplImage *img); void ForegroundCombineEdge(); // 结合边缘信息 void DeleteSmallAreaInForeground(double minArea=20);//删除小面积区域 // 实现背景更新机制 void Update(); // 实现后处理,主要用形态学算子 void PostProcess(); public: ~Vibe(void); private: void ClearLongLifeForeground(int i_lifeLength=200); // 清除场景中存在时间较长的像素,i_lifeLength用于控制允许存在的最长时间 double AreaDense(IplImage *pFr,int AI,int AJ,int W,int H); //计算(i,j)处邻域大小为W×H的密度 int GetRandom(int istart,int iend); // 默认istart=0,iend=15 int GetRandom(int random); int GetRandom();// 产生一个随机数 // 计算两个像素之间的欧式距离 double CalcPixelDist(CvScalar bkCs,CvScalar curCs); // 按照Kim的方法来计算颜色畸变 double CalcuColorDist(CvScalar bkCs,CvScalar curCs); int g_SampleNum;// Sample number for the models,默认为20 int g_MinMatch; // 当前像素与背景模型匹配的最少个数,默认为2 int g_Height; int g_Width; int g_Radius;// 球体的半径,默认为20 int g_offset; //边界的宽和高 double g_threshold; // 距离度量的阈值 unsigned char ***g_Model;// 保存背景模型 IplImage *g_ForeImg;// 保存前景图 IplImage *g_Edge; IplConvKernel* element; IplImage *g_SegementMask; //分割掩膜 IplImage *g_UpdateMask; // 更新掩膜 IplImage *g_Gray; int ** LifeLength; // 记录前景点的生命长度,如果前景点的生命长度到达一定的阈值,则将其融入背景中去,且要随机两次。 };
#include "StdAfx.h" #include "Vibe.h" Vibe::Vibe(void) { g_Radius=20; g_MinMatch=2; g_SampleNum=20; g_offset=(WINSIZE-1)/2; } Vibe::Vibe(IplImage *img) { if (!img) { cout<<" The parameter referenced to NUll Pointer!"<<endl; return; } this->g_Height=img->height; this->g_Width=img->width; g_Radius=20; g_MinMatch=2; g_SampleNum=20; g_threshold=50; g_offset=(WINSIZE-1)/2; g_ForeImg=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1); g_Gray=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1); g_Edge=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1); g_SegementMask=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1); g_UpdateMask=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1); element=cvCreateStructuringElementEx(3,3,1,1,CV_SHAPE_CROSS,NULL); cvCvtColor(img,g_Gray,CV_BGR2GRAY); // 以上完成相关的初始化操作 /********************** 以下实现第一帧在每个像素的8邻域内的采样功能,建立对应的背景模型*****************************/ int i=0,j=0,k=0; g_Model=new unsigned char**[g_SampleNum]; for (k=0;k<g_SampleNum;k++) { g_Model[k]=new unsigned char *[g_Height]; for(i=0;i<g_Height;i++) { g_Model[k][i]=new unsigned char [g_Width]; for (j=0;j<g_Width;j++) { g_Model[k][i][j]=0; } } } // 采样进行背景建模 double dVal; int ri=0,rj=0; //随机采样的值 for (i=g_offset;i<g_Height-g_offset;i++) { for (j=g_offset;j<g_Width-g_offset;j++) { // 周围3*3的邻域内进行采样 for(k=0;k<g_SampleNum;k++) { ri=GetRandom(i); rj=GetRandom(j); dVal=cvGetReal2D(g_Gray,ri,rj); g_Model[k][i][j]=dVal; } } } // 初始化前景点掩膜的生命长度 LifeLength=new int *[g_Height]; for (i=0;i<g_Height;i++) { LifeLength[i]=new int [g_Width]; for(j=0;j<g_Width;j++) { LifeLength[i][j]=0; } } } void Vibe::Detect(IplImage *img) { cvZero(g_ForeImg); cvCvtColor(img,g_Gray,CV_BGR2GRAY); int i=0,j=0,k=0; double dModVal,dCurrVal; int tmpCount=0;// 距离比较在阈值内的次数 double tmpDist=0; int iR1,iR2;//产生随机数 int Ri,Rj; // 产生邻域内X和Y的随机数 for (i=0;i<g_Height;i++) { for (j=0;j<g_Width;j++) { if( i < g_offset || j < g_offset || i> g_Height - g_offset || j> g_Width - g_offset ) { cvSetReal2D(g_ForeImg,i,j,0); continue; } else { tmpCount=0; dCurrVal=cvGetReal2D(g_Gray,i,j); for (k=0;k<g_SampleNum && tmpCount<g_MinMatch ;k++) { dModVal=g_Model[k][i][j]; //tmpDist=CalcPixelDist(dCurrVal,dModVal); //tmpDist=CalcuColorDist(dCurrVal,dModVal); tmpDist=fabs(dModVal-dCurrVal); if (tmpDist<g_Radius) { tmpCount++; } } //判断是否匹配上 if (tmpCount>=g_MinMatch) { cvSetReal2D(g_ForeImg,i,j,0); // 背景模型的更新 iR1=GetRandom(0,15); if (iR1==0) { iR2=GetRandom(); g_Model[iR2][i][j]=dCurrVal; } //进一步更新邻域模型 iR1=GetRandom(0,15); if (iR1==0) { Ri=GetRandom(i); Rj=GetRandom(j); iR2=GetRandom(); g_Model[iR2][Ri][Rj]=dCurrVal; } } else { cvSetReal2D(g_ForeImg,i,j,255); } } } } //ForegroundCombineEdge(); DeleteSmallAreaInForeground(80); ClearLongLifeForeground(); //PostProcess(); } double Vibe::AreaDense(IplImage *pFr,int AI,int AJ,int W,int H) { if (AI<=2 || AJ<=2 || AJ>=(g_Width-2) || AI>=(g_Height-2)) { return 0; } int Num=0,i=0,j=0; double dVal=0,dense=0; int Total=(2*H+1)*(2*W+1); for (i=AI-H;i<=AI+H;i++) { for (j=AJ-W;j<=AJ+W;j++) { dVal=cvGetReal2D(pFr,i,j); if (dVal>200) { Num++; } } } dense=(double)Num/(double)Total; return dense; } void Vibe::ForegroundCombineEdge() { cvZero(g_Edge); //cvZero(g_SegementMask); //cvCopy(g_ForeImg,g_SegementMask); cvCanny(g_Gray,g_Edge,30,200,3); int i=0,j=0; double dense; double dVal; for (i=g_offset;i<g_Height-g_offset;i++) { for (j=g_offset;j<g_Width-g_offset;j++) { dense=AreaDense(g_ForeImg,i,j,2,2); dVal=cvGetReal2D(g_Edge,i,j); if (dense>0.2 && dVal>200) { cvSetReal2D(g_ForeImg,i,j,255); } } } } void Vibe::DeleteSmallAreaInForeground(double minArea/* =20 */) { //cvZero(g_SegementMask); //cvCopy(g_ForeImg,g_SegementMask); int region_count = 0; CvSeq *first_seq = NULL, *prev_seq = NULL, *seq = NULL; CvMemStorage* storage = cvCreateMemStorage(); cvClearMemStorage(storage); cvFindContours( g_ForeImg, storage, &first_seq, sizeof(CvContour), CV_RETR_LIST ); for( seq = first_seq; seq; seq = seq->h_next ) { CvContour* cnt = (CvContour*)seq; if( cnt->rect.width * cnt->rect.height < minArea ) { prev_seq = seq->h_prev; if( prev_seq ) { prev_seq->h_next = seq->h_next; if( seq->h_next ) seq->h_next->h_prev = prev_seq; } else { first_seq = seq->h_next; if( seq->h_next ) seq->h_next->h_prev = NULL; } } else { region_count++; } } cvZero(g_ForeImg); cvDrawContours(g_ForeImg, first_seq, CV_RGB(0, 0, 255), CV_RGB(0, 0, 255), 10, -1); /* CvContourScanner scanner = cvStartFindContours( g_ForeImg, storage,sizeof(CvContour), CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0) ); CvSeq *contours=NULL,*c=NULL; int poly1Hull0=0; int nContours=0; double perimScale=100; while( (c = cvFindNextContour( scanner )) != 0 ) { double len = cvContourPerimeter( c ); double q = (g_ForeImg->height + g_ForeImg->width)/perimScale; // calculate perimeter len threshold if( len < q ) //Get rid of blob if it's perimeter is too small cvSubstituteContour( scanner, 0 ); else //Smooth it's edges if it's large enough { CvSeq* newC; if( poly1Hull0 ) //Polygonal approximation of the segmentation newC = cvApproxPoly( c, sizeof(CvContour), storage, CV_POLY_APPROX_DP, 2, 0 ); else //Convex Hull of the segmentation newC = cvConvexHull2( c, storage, CV_CLOCKWISE, 1 ); cvSubstituteContour( scanner, newC ); nContours++; } } contours = cvEndFindContours( &scanner ); // paint the found regions back into the image cvZero( g_ForeImg ); for( c=contours; c != 0; c = c->h_next ) cvDrawContours( g_ForeImg, c, cvScalarAll(255), cvScalarAll(0), -1, CV_FILLED, 8,cvPoint(0,0)); */ cvReleaseMemStorage(&storage); } void Vibe::ClearLongLifeForeground(int i_lifeLength/* =200 */) { int i=0,j=0; double dVal=0; double dLife=0; int iR1,iR2=0; double dCurrVal=0; for (i=g_offset;i<g_Height-g_offset;i++) { for (j=g_offset;j<g_Width-g_offset;j++) { dVal=cvGetReal2D(g_ForeImg,i,j); dLife=LifeLength[i][j]; if (dLife>i_lifeLength) { LifeLength[i][j]=0; dCurrVal=cvGetReal2D(g_Gray,i,j); // 更新背景模型 iR1=GetRandom(); iR2=GetRandom(); g_Model[iR1][i][j]=dCurrVal; g_Model[iR2][i][j]=dCurrVal; } else { LifeLength[i][j]=dLife+1; } } } } void Vibe::Update() { cvZero(g_UpdateMask); } void Vibe::PostProcess() { cvZero(g_SegementMask); cvMorphologyEx(g_ForeImg,g_SegementMask,NULL,element,CV_MOP_OPEN,1); } //算颜色畸变 double Vibe::CalcuColorDist(CvScalar bkCs,CvScalar curCs) { double r,g,b,br,bg,bb; r=curCs.val[0]; g=curCs.val[1]; b=curCs.val[2]; br=bkCs.val[0]; bg=bkCs.val[1]; bb=bkCs.val[2]; double curDist=r*r+g*g*b*b; double bkDist=br*br+bg*bg+bb*bb; double curBK=r*br+g*bg+b*bb; double curbkDist=curBK*curBK; double SquareP; if (bkDist==0.0) { SquareP=0; } else { SquareP=curbkDist/bkDist; } double dist=sqrtf(curDist-SquareP); return dist; } double Vibe::CalcPixelDist(CvScalar bkCs,CvScalar curCs) { double tmpDist=pow(bkCs.val[0]-curCs.val[0],2)+pow(bkCs.val[1]-curCs.val[1],2)+pow(bkCs.val[2]-curCs.val[2],2); return sqrtf(tmpDist); } int Vibe::GetRandom() { int val = g_SampleNum * 1.0 * rand() / RAND_MAX; if( val == g_SampleNum ) return val - 1; else return val; } int Vibe::GetRandom(int random) { int val=random-g_offset+rand()%(2*g_offset); if (val<random-g_offset) { val=random-g_offset; } if (val>random+g_offset) { val=random+g_offset; } return val; } int Vibe::GetRandom(int istart,int iend) { int val=istart+rand()%(iend-istart); return val; } Vibe::~Vibe(void) { if (g_ForeImg) { cvReleaseImage(&g_ForeImg); } if (g_SegementMask) { cvReleaseImage(&g_SegementMask); } if (g_UpdateMask) { cvReleaseImage(&g_UpdateMask); } if (g_Gray) { cvReleaseImage(&g_Gray); } if (g_Model!=NULL) { delete[]g_Model; g_Model=NULL; } }最后附上调用的main函数;
int _tmain(int argc, _TCHAR* argv[]) { CvCapture *capture=NULL; IplImage* frame=NULL; IplImage* pForeImg=NULL; IplImage* segImg=NULL; char *file_path="E:\\testVideo\\VTS_01_4.avi"; // m1 test2 锦带河 VTS_01_4_2 head rear VTS_01_6_2 VTS_01_4 //const char* file_path="E:\\suntektechvideo\\锦带河.avi"; //test2 capture=cvCreateFileCapture(file_path); if (!capture) { //cout<<"Read Video File Error!"<<endl; return -1; } frame=cvQueryFrame(capture); frame=cvQueryFrame(capture); cvNamedWindow("img",1); cvNamedWindow("foreN",1); //cvNamedWindow("seg",1); Vibe* pV=new Vibe(frame); while(frame=cvQueryFrame(capture)) { pV->Detect(frame); pForeImg=pV->GetForeground(); //segImg=pV->GetSegMask(); //frame->origin=1; //pForeImg->origin=1; cvShowImage("img",frame); cvShowImage("foreN",pForeImg); //cvShowImage("seg",segImg); cvWaitKey(1); } cvReleaseImage(&frame); cvReleaseImage(&pForeImg); cvReleaseCapture(&capture); return 0; }代码没做过多的注释,但现有的注释应该对于理解代码足够了。另外,对于计算机视觉里的任何一种算法都不是万能的,VIBE也不例外,只能说VIBE相对其他算法有一定的优势,但是还是有相当的不足,其pixel-wise-based的灰度建模方式解决不了pixel-wise建模算法共有的问题,其他必要辅助信息的融合是必要的。