图像相似判断算法

思路:


1、原图,缩到,10*10大小;

2、去色(灰化),重置每个点的颜色,算法为:(color=(red*30+green*59+blue*11)/100;color=(color<<16)+(color<<8)+color;)

3、取图片所有像素颜色的非透明值的平均值,算法为:

(

w=h=10;

total=0;

for(i<w){

 for(j<h){

  total+=bmd.getPixel(i,j)&0x00ffffff;

 }

}

return total/(w*h);

)

4、再对10*10的缩小图的每个点,的每个像素颜色值,相与:0x00ffffff;(ARGB,非A部份的所有值);

如果结果值大于第3点所求的平均值,则为1,否则为0;

这样就得出一组数组:我就暂时叫:Hash-SN


这样,同一张图,经过两次该算法的结果肯定是一样的;

即使两张不一样的图,但相似度很高的,这时,就要给Hash-SN设置容差个数的比较;


以上是自己简单总结:


原文链接:http://www.limbo-nova.com/blog/similar-image-searching-algorithm-as3/

原文主要代码:

package
{
	import flash.display.Bitmap;
	import flash.display.BitmapData;
	import flash.events.Event;
	import flash.events.MouseEvent;
	import flash.geom.Matrix;
 
	import mx.controls.Alert;
 
	public class PHAImage
	{
		public function PHAImage()
		{
		}
 
		public static function process(bmpData:BitmapData):String
		{
			//processing the image
			trace("Start processing...\n");
			//scaling and converting
			var resizedData:BitmapData = reduceSize(bmpData,8,8);
			//转换为灰度
			var greyBmp:BitmapData = reduceColor(resizedData);
			//计算灰度平均值
			var avgGrey:uint = calcAvgGrey(greyBmp);
			trace("Average GreyScale:0x"+avgGrey.toString(16)+"\n");
			//比较灰度值与平均值,建立哈希指纹
			var hashArr:Array = calcAvgHash(greyBmp, avgGrey);
			trace("hashArr: ",hashArr.join(""));
			return hashArr.join("");
		}
 
		private static function reduceSize(source:BitmapData,width:Number = 8, height:Number=8):BitmapData
		{
			var newData:BitmapData = new BitmapData(width,height);
			var matrix:Matrix = new Matrix();
			//缩小至 8x8
			matrix.scale(newData.width/source.width, newData.height/source.height);
			newData.draw(source,matrix);
 
			return newData;
		}
 
		private static function reduceColor(source:BitmapData):BitmapData
		{
			var result:BitmapData = new BitmapData(source.width,source.height);
			for(var i:int = 0; i < source.height; i++)
			{
				for(var j:uint = 0; j < source.width; j++)
				{
					var color:uint = source.getPixel(i, j);
					var red:uint = (color & 0xFF0000) >> 16;
					var green:uint = (color & 0x00FF00) >> 8;
					var blue:uint = (color & 0x0000FF) >> 0;
					//var bwColor:uint = (red + green + blue) / 3;
					var bwColor:uint = (red * 30 + green * 59 + blue * 11) / 100;
					// puts the average in each channel
					bwColor = (bwColor << 16) + (bwColor << 8) + bwColor; 
					result.setPixel(i, j, bwColor);
				}
			}
			return result;
		}
 
		private static function calcAvgGrey(bmpData:BitmapData):uint
		{
			var vecGrey:Vector.<uint> = bmpData.getVector(bmpData.rect);
			var total:uint = 0;
			var length:uint = vecGrey.length;
			for(var i:int = 0; i< length;i++)
			{
				total += (vecGrey[i] & 0x00FFFFFF);
			}
 
			return uint(total/vecGrey.length);
		}
 
		//计算哈希
		private static function calcAvgHash(bmpData:BitmapData, avgValue:uint):Array
		{
			var vecGrey:Vector.<uint> = bmpData.getVector(bmpData.rect);
			var length:uint = vecGrey.length;
			var hashArr:Array = [];
			for(var i:int = 0; i< length;i++)
			{
				//ARGB 32位数据,只取RGB
				var pxColor:uint = vecGrey[i] & 0x00FFFFFF;	
				//是否小于灰度均值,小于记0,否则记0
				var value:uint =  pxColor < avgValue ? 0:1;
				hashArr.push(value);
			}
			return hashArr;
		}
	}
}


你可能感兴趣的:(图像相似判断算法)