CAS(Compare-And-Swap)指令是并行程序设计最基础的基石,随着越来越多的本本都用上了双核,这个世界已经快速步入并行计算时代,CAS指令发挥的作用也就越来越大。CAS指令,在Intel CPU上称为CMPXCHG,的作用是将指定内存地址的内容与所给的某个值相比,如果相等,则将其内容替换为所给的另一个值,这一系列操作是原子的,不可能被中断。基本上所有的同步机制,与信号量、Java中的synchronized等的实现最终都要用到CAS指令,即使锁无关的数据结构也离不开CAS指令。
关于CAS指令最著名的传闻是CAS需要锁总线,因此CAS指令不但慢而且会严重影响系统并发度,即使没有冲突是也一样。不过在较新的CPU中(对于Intel CPU来说是486之后),事实并非如此。目前的CPU一般都采用了很好的缓存一致性协议,在很多情况下能够防止锁总线的发生,这其中最著名的就是Intel CPU中使用的MESI缓存一致性协议。
先来说说缓存一致性问题。为了提高数据访问效率,每个CPU上都有一个容量很小(现在一般是1M这个数量级),速度很快的缓存,用于缓存最常访问的那些数据。由于操作内存的速度实在太慢,数据被修改时也只更新缓存,并不直接写出到内存中去,这一来就造成了缓存中的数据与内存不一致。如果系统中只有一个CPU,所有线程看到的都是缓存中的最新数据,当然没问题。但如果系统中有多个CPU,同一份内存可能会被缓存到多个CPU中,如果在不同CPU中运行的不同线程看到同一份内存的缓存值不一样就麻烦了,因此有必要维护这多种缓存的一致性。当然要做到这一点只要一有修改操作,就通知所有CPU更新缓存,或者放弃缓存下次访问的时候再重新从内存中读取。但这会Stupid的实现显然不会有好的性能,为解决这一问题,产生了很多维护缓存一致性的协议,MESI就是其中一种。
MESI协议的名称由来是指这一协议为缓存的每个数据单位(称为cache line,在Intel CPU上一般是64字节)维护两个状态位,使得每个数据单位可能处于M、E、S或I这四种状态之一。各种状态含义如下:
M: 被修改的。处于这一状态的数据只在本CPU中有缓存,且其数据已被修改,没有更新到内存中
E: 独占的。处于这一状态的数据只在本CPU中有缓存,且其数据没有被修改,与内存一致
S: 共享的。处于这一状态的数据在多个CPU中有缓存
I: 无效的。本CPU中的这份缓存已经无效了。
当CPU要读取数据时,只要缓存的状态不是I都可以从缓存中读,否则就要从主存中读。这一读操作可能会被某个处于M或E状态的CPU截获,该CPU将修改的数据写出到内存,并将自己设为S状态后这一读操作才继续进行。只有缓存状态是E或M时,CPU才可以修改其中的数据,修改后缓存即处于M状态。如果CPU要修改数据时发现其缓存不处于E或M状态,则需要发出特殊的RFO指令(Read For Ownership),将其它CPU的缓存设为I状态。
因此,如果一个变量在某段时间内只被一个线程频繁修改,则对应的缓存早就处于M状态,这时CAS操作就不会涉及到总线操作。所以频繁的加锁并不一定会影响系统并发度,关键是看锁冲突的情况严重不严重,如果经常出现冲突,即缓存一会被这个CPU独占,一会被那个CPU独占,这时才会不断产生RFO,影响到并发性能。
CPU原语-比较并交换(CompareAndSet),实现非阻塞算法
什么是CAS?
cas是现代CPU提供给并发程序使用的原语操作. 不同的CPU有不同的使用规范.
在 Intel 处理器中,比较并交换通过指令的 cmpxchg 系列实现。
PowerPC 处理器有一对名为“加载并保留”和“条件存储”的指令,它们实现相同的目地;
MIPS 与 PowerPC 处理器相似,除了第一个指令称为“加载链接”。
CAS 操作包含三个操作数 —— 内存位置(V)、预期原值(A)和新值(B)
什么是非阻塞算法?
一个线程的失败或挂起不应该影响其他线程的失败或挂起.这类算法称之为非阻塞(nonblocking)算法
对比阻塞算法:
如果有一类并发操作, 其中一个线程优先得到对象监视器的锁, 当其他线程到达同步边界时, 就会被阻塞.
直到前一个线程释放掉锁后, 才可以继续竞争对象锁.(当然,这里的竞争也可是公平的, 按先来后到的次序)
CAS 原理:
我认为位置 V 应该包含值 A;如果包含该值,则将 B 放到这个位置;否则,不要更改该位置,只告诉我这个位置现在的值即可。
CAS使用示例(jdk 1.5 并发包 AtomicInteger类分析
/** * Atomically sets to the given value and returns the old value. * * @param newValue the new value * @return the previous value */ public final int getAndSet(int newValue) { for (;;) { int current = get(); if (compareAndSet(current, newValue)) return current; } } public final boolean compareAndSet(int expect, int update) { return unsafe.compareAndSwapInt(this, valueOffset, expect, update); }
这个方法是, AtomicInteger类的常用方法, 作用是, 将变量设置为指定值, 并返回设置前的值.
它利用了cpu原语compareAndSet来保障值的唯一性.
另, AtomicInteger类中, 其他的实用方法, 也是基于同样的实现方式.
比如 getAndIncrement, getAndDecrement, getAndAdd等等.
CAS语义上存在的"ABA 问题"
什么是ABA问题?
假设, 第一次读取V地址的A值, 然后通过CAS来判断V地址的值是否仍旧为A, 如果是, 就将B的值写入V地址,覆盖A值.
但是, 语义上, 有一个漏洞, 当第一次读取V的A值, 此时, 内存V的值变为B值, 然后在未执行CAS前, 又变回了A值.
此时, CAS再执行时, 会判断其正确的, 并进行赋值.
这种判断值的方式来断定内存是否被修改过, 针对某些问题, 是不适用的.
为了解决这种问题, jdk 1.5并发包提供了AtomicStampedReference(有标记的原子引用)类, 通过控制变量值的版本来保证CAS正确性.
其实, 大部分通过值的变化来CAS, 已经够用了.
jdk1.5原子包介绍(基于volatile)
包的特色:
1, 普通原子数值类型AtomicInteger, AtomicLong提供一些原子操作的加减运算.
2, 使用了解决脏数据问题的经典模式-"比对后设定", 即 查看主存中数据是否与预期提供的值一致,如果一致,才更新.
3, 使用AtomicReference可以实现对所有对象的原子引用及赋值.包括Double与Float,
但不包括对其的计算.浮点的计算,只能依靠同步关键字或Lock接口来实现了.
4, 对数组元素里的对象,符合以上特点的, 也可采用原子操作.包里提供了一些数组原子操作类
AtomicIntegerArray, AtomicLongArray等等.
5, 大幅度提升系统吞吐量及性能.