链接:
http://acm.hdu.edu.cn/showproblem.php?pid=1142
http://acm.hust.edu.cn/vjudge/contest/view.action?cid=29256#problem/E
A Walk Through the Forest
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4588 Accepted Submission(s): 1661
Problem Description
Jimmy experiences a lot of stress at work these days, especially since his accident made working difficult. To relax after a hard day, he likes to walk home. To make things even nicer, his office is on one side of a forest, and his house is on the other. A nice walk through the forest, seeing the birds and chipmunks is quite enjoyable.
The forest is beautiful, and Jimmy wants to take a different route everyday. He also wants to get home before dark, so he always takes a path to make progress towards his house. He considers taking a path from A to B to be progress if there exists a route from B to his home that is shorter than any possible route from A. Calculate how many different routes through the forest Jimmy might take.
Input
Input contains several test cases followed by a line containing 0. Jimmy has numbered each intersection or joining of paths starting with 1. His office is numbered 1, and his house is numbered 2. The first line of each test case gives the number of intersections N, 1 < N ≤ 1000, and the number of paths M. The following M lines each contain a pair of intersections a b and an integer distance 1 ≤ d ≤ 1000000 indicating a path of length d between intersection a and a different intersection b. Jimmy may walk a path any direction he chooses. There is at most one path between any pair of intersections.
Output
For each test case, output a single integer indicating the number of different routes through the forest. You may assume that this number does not exceed 2147483647
Sample Input
5 6
1 3 2
1 4 2
3 4 3
1 5 12
4 2 34
5 2 24
7 8
1 3 1
1 4 1
3 7 1
7 4 1
7 5 1
6 7 1
5 2 1
6 2 1
0
Sample Output
Source
University of Waterloo Local Contest 2005.09.24
Recommend
Eddy
算法:Dijkstra+dfs
思路:
开始题目都没有看懂,比赛完了后看了下飘过的小牛的题解:点击打开链接
题目大意:
给你一个图,找最短路的条数。
但是有个非一般的的条件:如果a,b之间有路,且你选择要走这条路,那么必须保证a到终点的所有路都小于b到终点的一条路。
问满足这样的路径条数 有多少。。。
PS:无向图。。。
解题思路:
1.1为起点,2为终点,因为要走ab路时,必须保证那个条件,所以从终点开始使用单源最短路Dijkstra算法,就得到了最短的一条路,
作为找路的最低限度。
2.然后深搜每条路,看看满足题意的路径有多少条。当然,这个需要从起点开始搜,因为dis[i]数组中保存的都是该点到终点的最短距
离。
3.这样搜索之后,path[1]就是从起点到终点所有满足题意的路径的条数。
自己就想不到想不到
PS:好像应该去学下神奇的 spaf 了Orz
code:
/******************************************************************************************
开始题目都没有看懂,比赛完了后看了下飘过的小牛的题解
题目大意:
给你一个图,找最短路的条数。
但是有个非一般的的条件:如果a,b之间有路,且你选择要走这条路,那么必须保证a到终点的所有路都小于b到终点的一条路。
问满足这样的路径条数 有多少。。。
PS:无向图。。。
解题思路:
1.1为起点,2为终点,因为要走ab路时,必须保证那个条件,所以从终点开始使用单源最短路Dijkstra算法,就得到了最短的一条路,作为找路的最低限度。
2.然后深搜每条路,看看满足题意的路径有多少条。当然,这个需要从起点开始搜,因为dis[i]数组中保存的都是该点到终点的最短距离。
3.这样搜索之后,path[1]就是从起点到终点所有满足题意的路径的条数。
********************************************************************************************/
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int maxn = 1000+10;
const int INF = maxn*1000000;
int w[maxn][maxn]; //建图
int d[maxn]; //记录的是每个点到终点的最短路径长度
int vis[maxn];
int path[maxn]; //每个点到终点的最短路径的条数
int n,m;
void Dijkstra(int start)
{
for(int i = 1; i <= n; i++) d[i] = w[start][i];
d[start] = 0;
memset(vis,0,sizeof(vis));
for(int i = 1; i <= n; i++)
{
int x, m = INF;
for(int y = 1; y <= n; y++) if(!vis[y] && d[y] <= m) m = d[x=y];
vis[x] = 1;
for(int y = 1; y <= n; y++)
d[y] = min(d[y], d[x]+w[x][y]);
}
}
int dfs(int u)
{
if(path[u] != -1) return path[u]; //记忆化搜索
if(u == 2) return 1; //如果到达了终点
int sum = 0;
for(int v = 1; v <= n; v++) //依次遍历每一个点
if(w[u][v] != INF && d[v] < d[u]) //如果 u 到 v 有路, 而且 v 到终点的最短路径小于 u 到终点的最小路径
sum += dfs(v);
path[u] = sum;
return path[u];
}
int main()
{
while(scanf("%d", &n) != EOF)
{
if(n == 0) break;
scanf("%d", &m);
for(int i = 1; i <= n; i++) //初始化
{
path[i] = -1;
for(int j = 1; j <= n; j++)
{
w[i][j] = (i == j ? 0 : INF);
}
}
int u,v,dist;
while(m--)
{
scanf("%d%d%d", &u,&v,&dist);
w[u][v] = min(w[u][v], dist); //避免重边的情况
w[v][u] = w[u][v]; //无向图
}
Dijkstra(2); //从终点 2 开始找最短路
printf("%d\n", dfs(1)); //起点 1 到终点 2 的最短路的条数
}
return 0;
}