rsync算法及其优化算法

rsync算法要解决的问题很简单:A和B两个文件在两台服务器中,要将A同步到与B一致,要求尽量减少同步带来的网络传输开销。

rsync基本算法
先说基本的rsync算法,并不复杂,简单的说是三步:
1、按固定大小将A分为多块,每块都计算出一个32位的滚动哈希值和一个128位的MD4(有些也用MD5),发给B一端。
2、B一端从位置0开始按的同样块大小的滚动哈希值,查找看是否命中A给的某个滚动哈希值,若匹配,则表明B文件中的这块内容与对应的A中的那块内容很可能是一致的,但由于32位的哈希值强度不够,因此再计算MD4,若还是匹配,则确认是一致内容,这时B发给A端匹配的段号。对于那些不能匹配的内容,则发给A端原始内容。
3、A端得到B端给的匹配信息,构造一个与B一致的复本,若是匹配的块,则拷贝原A文件中对应的块,若是不匹配内容则追加之。

滚动哈希值的设计基于Adler32算法,使得2~K+1字节的哈希可以根据1~K字节哈希和1、K+1字节的内容快速计算得到,这可以提高从位置0开始依次计算滚动哈希值的效率。

据试验一般来说块大小取500~1000字节效果比较好。

rsync初级优化
在上述基本算法之上可以进行一些初级的优化,比如:
1、传输数据再做压缩
2、先用更短小的哈希值作同步,然后比较同步后二者MD5,如果不一样,再换用更长的哈希值,如此在大多数情况下可以减小哈希值的传输开销。因为如果用500字节的块大小的话,一个32位的滚动哈希值和一个128位的MD4会占用原始数据1/25的开销,并不太小

基于rsync的改进算法
基于rsync的改进算法主要有 多轮rsync和 本地rsync两个。

多轮rsync的原理简单的说就是先用较大的块大小按rsync的方法处理一轮,但只传输那些命中的块,那些没命中的数据称为“空洞”,按较小的块大小再按rsync的方法又处理一轮,如此双可能产生规模更小的“空洞”,如此按来一轮,直到块大小到配置的最小块大小为止。最后一轮跟原始rsync是一样的,当然只处理上一轮遗留下来的“空洞”。多轮rsync在理论上可以将最差情况下的复杂度(以传输的数据量称是)从原rsync的O(sqrt(n))提高到O(ln  n)。试验中有时多轮rsync可以比原rsync有10倍的提升,但大部分情况下是类似的。

本地rsync则是直接更新A到与B一致,原始rsync算法是需要构造一个与B一致的副本。为实现这一点,需要先拿到所有匹配信息后进行拓扑排序,再依次应用,是有些复杂的。

你可能感兴趣的:(算法,优化,网络,服务器)