HDOJ 2674 N!Again(同余定理)

N!Again

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4044    Accepted Submission(s): 2177


Problem Description
WhereIsHeroFrom:             Zty, what are you doing ?
Zty:                                     I want to calculate N!......
WhereIsHeroFrom:             So easy! How big N is ?
Zty:                                    1 <=N <=1000000000000000000000000000000000000000000000…
WhereIsHeroFrom:             Oh! You must be crazy! Are you Fa Shao?
Zty:                                     No. I haven's finished my saying. I just said I want to calculate N! mod 2009


Hint : 0! = 1, N! = N*(N-1)!
 


 

Input
Each line will contain one integer N(0 <= N<=10^9). Process to end of file.
 


 

Output
For each case, output N! mod 2009
 


 

Sample Input
   
   
   
   
4 5
 


 

Sample Output
   
   
   
   
24 120
 


赛后清题,组队赛第一场,跪了!!!

 

这一题考查的是同余定理,但是不能硬做会超时,要剪枝。

 

注:此题运用的同余定理公式为:(n*m)%c=(n%c*m%c)%c

 

一,题目是求n的阶乘对2009取余,即可知所有大于等于2009的数的阶乘对2009取余都等于0,所以有以下程序:

 

#include<cstdio>
int main()
{
	int n,i,ans;
	while(scanf("%d",&n)!=EOF)
	{
		ans=1;
		if(n>=2009)
		  printf("0\n");
		else
		{
			for(i=2;i<=n;i++)
				ans=(ans*(i%2009))%2009;
			printf("%d\n",ans);
		}
	}
	return 0;
}


 

二,2009=41*7*7,即可知所有大于等于41的数的阶乘对2009取余都等于零,时间复杂度再次减少,代码如下:

 

#include<cstdio>
int main()
{
	int n,i,ans;
	while(scanf("%d",&n)!=EOF)
	{
		ans=1;
		if(n>=41)
		  printf("0\n");
		else
		{
			for(i=2;i<=n;i++)
				ans=(ans*(i%2009))%2009;
			printf("%d\n",ans);
		}
	}
	return 0;
}


 

你可能感兴趣的:(HDOJ 2674 N!Again(同余定理))