[翻译] Effective C++, 3rd Edition, Item 49: 了解 new-handler 的行为(上)

Item 49: 了解 new-handler 的行为

作者:Scott Meyers

译者:fatalerror99 (iTePub's Nirvana)

发布:http://blog.csdn.net/fatalerror99/

当 operator new 不能满足一个内存分配请求时,它抛出一个 exception(异常)。很久以前,他返回一个 null pointer(空指针),而一些比较老的编译器还在这样做。你依然能得到以前的行为(在一定程度上),但是我要到这个 Item 的最后再讨论它。

在 operator new 因回应一个无法满足的内存请求而抛出一个 exception 之前,它先调用一个可以由客户指定的被称为 new-handler 的 error-handling function(错误处理函数)。(这并不完全确切,operator new 真正做的事情比这个稍微复杂一些,详细细节在 Item 51 提供。)为了指定 out-of-memory-handling function,客户调用 set_new_handler ——一个在 <new> 中声明的标准库函数:

namespace std {

  typedef void (*new_handler)();
  new_handler set_new_handler(new_handler p) throw();
}

就像你能够看到的,new_handler 是一个指针的 typedef,这个指针指向不取得和返回任何东西的函数,而 set_new_handler 是一个取得和返回一个 new_handler 的函数。(set_new_handler 的声明的结尾处的 "throw()" 是一个 exception specification(异常规范)。它基本上是说这个函数不会抛出任何异常,尽管真相更有趣一些。关于细节,参见 Item 29。)

set_new_handler 的形参是一个指向函数的指针,这个函数是 operator new 无法分配被请求的内存时应该调用的。set_new_handler 的返回值是一个指向函数的指针,这个函数是 set_new_handler 被调用前有效的目标。

你可以像这样使用 set_new_handler:

// function to call if operator new can't allocate enough memory
void outOfMem()
{
  std::cerr << "Unable to satisfy request for memory/n";
  std::abort();
}
int main()
{
  std::set_new_handler(outOfMem);
  int *pBigDataArray = new int[100000000L];
  ...
}

如果 operator new 不能为 100,000,000 个整数分配空间,outOfMem 将被调用,而程序将在发出一个错误信息后中止。(顺便说一句,考虑如果在写这个错误信息到 cerr... 的过程中内存必须被动态分配会发生什么。)

当 operator new 不能满足一个内存请求时,它反复调用 new-handler function 直到它能找到足够的内存。引起这些重复调用的代码在 Item 51 中展示,但是从这种高层次的描述已足够推导出一个设计得好的 new-handler function 必须做到以下事情之一:

  • Make more memory available(使得更多的内存可用)。这可能使得 operator new 中下一次内存分配的尝试成功。实现这一策略的一个方法是在程序启动时分配一大块内存,然后在 new-handler 第一次被调用时释放它供程序使用。
  • Install a different new-handler(安装一个不同的 new-handler)。如果当前的 new-handler 不能做到使更多的内存可用,或许它知道有一个不同的 new-handler 可以做到。如果是这样,当前的 new-handler 能在它自己的位置上安装另一个 new-handler(通过调用 set_new_handler)。operator new 下一次调用 new-handler function 时,它会得到最近安装的那一个。(这个主线上的一个变化是让一个 new-handler 改变它自己的行为,这样,下一次它被调用时,可以做一些不同的事情。做到这一点的一个方法是让 new-handler 改变能影响 new-handler 行为的 static(静态),namespace-specific(名字空间专用)或 global(全局)的数据。)
  • Deinstall the new-handler(卸载 new-handler),也就是,将空指针传给 set_new_handler。没有 new-handler 被安装,当内存分配没有成功时,operator new 抛出一个异常。
  • Throw an exception(抛出一个异常),类型为 bad_alloc 或继承自 bad_alloc 的其它类型。这样的异常不会被 operator new 捕获,所以它们将被传播到发出内存请求的地方。
  • Not return(不再返回),典型情况下,调用 abort 或 exit。

这些选择使你在实现 new-handler functions 时拥有极大的弹性。

有时你可能希望根据被分配 object 的不同,用不同的方法处理内存分配的失败:

class X {
public:
  static void outOfMemory();
  ...
};
class Y {
public:
  static void outOfMemory();
  ...
};
X* p1 = new X;                        // if allocation is unsuccessful,
                                      // call X::outOfMemory

Y* p2 = new Y;                        // if allocation is unsuccessful,
                                      // call Y::outOfMemory

C++ 没有对 class-specific new-handlers 的支持,但是它也不需要。你可以自己实现这一行为。你只要让每一个 class 提供 set_new_handler 和 operator new 的它自己的版本即可。class 的 set_new_handler 允许客户为这个 class 指定 new-handler(正像standard set_new_handler 允许客户指定global new-handler)。class 的 operator new 确保当为 class objects 分配内存时,class-specific new-handler 代替 global new-handler 被使用。

假设你要为 Widget class 处理内存分配失败。你就必须清楚当 operator new 不能为一个 Widget object 分配足够的内存时所调用的函数,所以你需要声明一个 new_handler 类型的 static member(静态成员)指向这个 class 的 new-handler function。Widget 看起来就像这样:

class Widget {
public:
  static std::new_handler set_new_handler(std::new_handler p) throw();
  static void * operator new(std::size_t size) throw(std::bad_alloc);
private:
  static std::new_handler currentHandler;
};

static class members(静态类成员)必须在 class 定义外被定义(除非它们是 const 而且是 integral ——参见 Item 2),所以:

std::new_handler Widget::currentHandler = 0;    // init to null in the class
                                                // impl. file

Widget 中的 set_new_handler 函数会保存传递给它的任何指针,而且会返回前次调用时被保存的任何指针,这也正是 set_new_handler 的标准版本所做的事情:

std::new_handler Widget::set_new_handler(std::new_handler p) throw()
{
  std::new_handler oldHandler = currentHandler;
  currentHandler = p;
  return oldHandler;
}

最终,Widget 的 operator new 将做下面这些事情:

  1. 以 Widget 的 error-handling function 为参数调用 standard set_new_handler。这样将 Widget 的new-handler 安装为 global new-handler。
  2. 调用 global operator new 进行真正的内存分配。如果分配失败,global operator new 调用 Widget 的 new-handler,因为那个函数刚才被安装为 global new-handler。如果 global operator new 最后还是无法分配内存,它会抛出一个 bad_alloc exception。在此情况下,Widget 的 operator new 必须恢复原来的 global new-handler,然后传播那个 exception。为了确保原来的 new-handler 总能被恢复,Widget 将 global new-handler 作为一种资源对待,并遵循 Item 13 的建议,使用 resource-managing objects(资源管理对象)来预防 resource leaks(资源泄漏)。
  3. 如果 global operator new 能够为一个 Widget object 分配足够的内存,Widget 的 operator new 返回一个指向被分配内存的指针。object 的用于管理 global new-handler 的 destructor(析构函数)自动将 global new-handler 恢复到调用 Widget 的 operator new 之前的状态。

以下就是你如何在 C++ 中表达这所有的事情。我们以 resource-handling class 开始,组成部分中除了基本的 RAII 操作(在构造过程中获得资源并在析构过程中释放)(参见 Item 13),没有更多的东西:

class NewHandlerHolder {
public:
  explicit NewHandlerHolder(std::new_handler nh)    // acquire current
  :handler(nh) {}                                   // new-handler

  ~NewHandlerHolder()                               // release it
  { std::set_new_handler(handler); }
private:
  std::new_handler handler;                         // remember it

  NewHandlerHolder(const NewHandlerHolder&);        // prevent copying
  NewHandlerHolder&                                 // (see Item 14)
   operator=(const NewHandlerHolder&);
};

这使得 Widget 的 operator new 的实现非常简单:

void * Widget::operator new(std::size_t size) throw(std::bad_alloc)
{
  NewHandlerHolder                              // install Widget's
   h(std::set_new_handler(currentHandler));     // new-handler

  return ::operator new(size);                  // allocate memory
                                                // or throw

}                                               // restore global
                                                // new-handler

Widget 的客户像这样使用它的 new-handling capabilities(处理 new 的能力):

void outOfMem();                   // decl. of func. to call if mem. alloc.
                                   // for Widget objects fails

Widget::set_new_handler(outOfMem); // set outOfMem as Widget's
                                   // new-handling function

Widget *pw1 = new Widget;          // if memory allocation
                                   // fails, call outOfMem

std::string *ps = new std::string; // if memory allocation fails,
                                   // call the global new-handling
                                   // function (if there is one)

Widget::set_new_handler(0);        // set the Widget-specific
                                   // new-handling function to
                                   // nothing (i.e., null)

Widget *pw2 = new Widget;          // if mem. alloc. fails, throw an
                                   // exception immediately. (There is
                                   // no new- handling function for
                                   // class Widget.)

无论 class 是什么,实现这个方案的代码都是一样的,所以在其它地方重用它就是一个合理的目标。使它成为可能的一个简单方法是创建一个 "mixin-style" base class(“混合风格”基类),也就是说,一个设计为允许 derived classes(派生类)继承一个单一特定能力(在当前情况下,就是设定一个 class-specific new-handler 的能力)的 base class(基类)。然后把这个 base class(基类)转化为一个 template(模板),以便于你得到针对每一个 inheriting class(继承来的类)的 class data 的不同拷贝。

这个设计的 base class(基类)部分让 derived classes(派生类)继承它们全都需要的 set_new_handler 和 operator new functions,而这个设计 template(模板)部分确保每一个 inheriting class(继承来的类)得到一个不同的 currentHandler data member(数据成员)。这听起来可能有点复杂,但是代码看上去可靠而且熟悉。实际上,仅有的真正不同是它现在可以用在任何需要它的 class 之上:

template<typename T>              // "mixin-style" base class for
class NewHandlerSupport{          // class-specific set_new_handler
public:                           // support

  static std::new_handler set_new_handler(std::new_handler p) throw();
  static void * operator new(std::size_t size) throw(std::bad_alloc);

  ...                             // other versions of op. new —
                                  // see Item 52
private:
  static std::new_handler currentHandler;
};

template<typename T>
std::new_handler
NewHandlerSupport<T>::set_new_handler(std::new_handler p) throw()
{
 std::new_handler oldHandler = currentHandler;
 currentHandler = p;
 return oldHandler;
}

template<typename T>
void* NewHandlerSupport<T>::operator new(std::size_t size)
  throw(std::bad_alloc)
{
  NewHandlerHolder h(std::set_new_handler(currentHandler));
  return ::operator new(size);
}
// this initializes each currentHandler to null
template<typename T>
std::new_handler NewHandlerSupport<T>::currentHandler = 0;

有了这个 class template(类模板),为 Widget 增加 set_new_handler 支持就很容易了:Widget 只需要从 NewHandlerSupport<Widget> 继承即可。(可能看起来很奇特,但是下面我将解释更多的细节。)

class Widget: public NewHandlerSupport<Widget> {
  ...                          // as before, but without declarations for
};                             // set_new_handler or operator new

这些就是 Widget 为了提供一个 class-specific set_new_handler 所需要做的全部。

(本篇未完,点击此处,接下篇)

你可能感兴趣的:(C++,exception,function,Class,destructor,Allocation)