Leetcode: Word Ladder

Given two words (start and end), and a dictionary, find the length of shortest transformation sequence from start to end, such that:

  1. Only one letter can be changed at a time
  2. Each intermediate word must exist in the dictionary

For example,

Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]

As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog",
return its length 5.

Note:

  • Return 0 if there is no such transformation sequence.
  • All words have the same length.
  • All words contain only lowercase alphabetic characters.


利用edit distance的思想,构造一颗树,根节点为start字符串,根的孩子节点为与其edit distance为1的字符串,以此类推,树中每一个父节点的孩子节点,都是与其edit distance为1的字符串。然后利用广度优先算法,逐层遍历该树,直到找到end为止。
#include <iostream>
#include <unordered_set>
#include <queue>
#include <string>
using namespace std;

int ladderLength(string start,string end,unordered_set<string> &dict)
{
	queue<pair<string,int>> q;
	q.push(make_pair(start,1));

	unordered_set<string> visited;
	visited.insert(start);

	while (!q.empty())
	{
		string curStr = q.front().first;
		int curLevel = q.front().second;
		q.pop();

		for (int i=0;i<curStr.size();i++)
		{
			string tmp = curStr;

			for (char ch='a';ch<='z';ch++)
			{
				tmp[i]=ch;

				if (tmp == end)
				{
					return curLevel+1;
				}

				if (visited.find(tmp)==visited.end() && dict.find(tmp)!=dict.end())
				{
					q.push(make_pair(tmp,curLevel+1));
				}
			}
		}
	}

	return 0;
}

int main()
{
	string start="hit";
	string end="cog";

	unordered_set<string> dict;
	dict.insert("hot");
	dict.insert("dot");
	dict.insert("dot");
	dict.insert("lot");
	dict.insert("log");

	int len = ladderLength(start,end,dict);

	cout<<len<<endl;

	return 0;
}


你可能感兴趣的:(LeetCode,word,ladder)