POJ 2191 各种素数算法

来自Discuss.
分析:首先打出63以内的素数prime[i...n],之后利用miller_rabin素数测试法测试
2^prime[i]-1是否为素数(可打表或不,不怎么影响)。如果不是则利用Pollard对该数进行质因子分解。 对于miller_rabin素数测试法和Pollard整数质因子分解数论方面的书都有,
几乎是模板。
code:
2191 Accepted 172K 16MS C++ 3050B 


#include<iostream>
#include<cstring>
#include<ctime>
#include<cstdlib>
#include<cmath>
#include<algorithm>
//#define MAX (pow(2.0, 62))  
#define C 240
#define TIME 6   
using namespace std;


__int64 ans[65]; //存2^prime[i]-1非素数的质因子
int prime[65],x[65],m,cnt;


__int64 gcd(__int64 a,__int64 b)
{
    if(b==0)
        return a;
    return gcd(b,a%b);
}


__int64 mod_mult(__int64 a,__int64 b,__int64 n) 
{
    __int64 s=0;
    a=a%n;
    while(b)
    {
        if (b&1) 
	{
            s+=a;
            if(s>=n)
                s-=n;
        }
        a=a<<1;
        if(a>=n)
            a-=n;
        b=b>>1;
    }


    return s;
}


__int64 mod_exp(__int64 a, __int64 b,__int64 n) 
{
    __int64 d=1;
    a=a%n;
    while (b>=1)
    {
        if (b&1)
            d=mod_mult(d,a,n);
        a=mod_mult(a,a,n);
        b=b>> 1;
    }
    return d;
}


bool Wintess(__int64 a,__int64 n) 
{
    __int64 m,x,y;
    int i,j=0;
    m=n-1;
    while(m%2==0) 
    {
        m=m>>1;
        j++;
    }
    x=mod_exp(a, m, n);
    for(i=1;i<=j;i++) 
	{
        y=mod_exp(x,2,n);
        if((y==1)&&(x!=1)&&(x!=n-1))   
            return true;  
        x=y;
    }
    if (y!=1)
        return true;
    return false;
}


bool miller_rabin(int times,__int64 n) 
{
    __int64 a;
    int i;
    if (n==1)
        return false;
    if (n==2)
        return true;
    if (n%2==0)
        return false;
    srand(time(NULL));  
    for (i =1;i<=times;i++) 
	{
        a=rand()%(n-1)+1;
        if(Wintess(a,n))
            return false;
    }
    return true;
}


__int64 Pollard(__int64 n,int c) 
{
    __int64 i,k,x,y,d;
    srand(time(NULL));
    i=1;
    k=2;
    x=rand()%n;
    y=x;
    while(true) 
	{
        i++;
        x=(mod_mult(x,x,n)+c)%n;
        d=gcd(y-x,n);
        if (d>1&&d<n)
            return d;
        if (y==x)  
            return n;
        if (i==k) 
		{
            y=x;
            k=k<<1;
        }
    }
}


void get_prime(__int64 n,int c) 
{//二分找出所有素因子 
    __int64 m;
    if(n==1)
        return;
    if(miller_rabin(TIME,n)) 
    {
        ans[cnt++]=n;
        return;
    }
    m=n;
    while(m>=n) 
        m=Pollard(m,c--);
    get_prime(m,c); 
    get_prime(n/m,c);
}


void init()
{
	int i,tmp;
	memset(x,0,sizeof(x));
	x[0]=x[1]=1;  m=0;
	for(i=2;i<=63;i++)
	{
		if(!x[i])
		{
			prime[++m]=i;
			tmp=i*i;
			while(tmp<=63)
			{
				x[tmp]=1;
				tmp+=i;
			}
		}
	}
}


bool cmp(__int64 n1,__int64 n2)
{
	return n1<n2;
}


int main()
{
    init();
    int p,i,j;
    scanf("%d",&p);
    for(i=1;i<=m;i++)
    {
		if(prime[i]<=p)
		{
			__int64 n=((__int64)1<<prime[i])-1;
			if(miller_rabin(TIME,n))//判断是否是素数
				continue;
			memset(ans,0,sizeof(ans));
			cnt=0;
			get_prime(n,C); //分解素因子
			sort(ans,ans+cnt,cmp);
			for(j=0;j<cnt-1;j++)
				printf("%I64d * ",ans[j]);
			printf("%I64d = %I64d = ( 2 ^ %d ) - 1\n",ans[j],n,prime[i]);
		}
		else
			break;
	}
    return 0;
}


你可能感兴趣的:(c,算法,测试,null,n2)