简单来说其实使用数组模拟LinkedList。同LinkedList的操作基本相似。
基本原理为:数组存放Entry对象,包含数据部分,指针部分(数组下标)
添加,删除基本操作改变指针。数组包含两个链表,一个备用链表(空数据,仅含指针)与
实际存放数据的链表(即保存存入的数)。添加先从备用链表中获取一个空闲节点,
移除把节点重新放入备用链表等待获取。采用ArrayList的数组自动扩张的方法。
具体代码如下:
package com.utils;
import java.util.AbstractSequentialList;
import java.util.Arrays;
import java.util.Collection;
import java.util.ConcurrentModificationException;
import java.util.List;
import java.util.ListIterator;
import java.util.NoSuchElementException;
/**
* 用数组模拟双向循环列表
*/
public class ArrayLinkedList<E> extends AbstractSequentialList<E> implements
List<E>{
//空闲链表头结点,索引为0的位置设置头结点
private transient Entry<E> freeHeader;
//实际链表头结点,索引为1的位置设置头结点
private transient Entry<E> header;
private transient int size = 0;
//数组中存储的Entry对象个数
private transient Object[] data;
//Object数组,因为java不支持泛型数组,即Entry<E>[] data = new Entry<E>[10] //error
//遍历时进行强制类型转换即可
/**
* 构造方法一,初始化化数组
*/
public ArrayLinkedList(int initialCapacity) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
initArray(initialCapacity);
}
/**
* 构造方法二,构造含有指定集合c中所有元素的链表
* 具体见addAll方法
*/
public ArrayLinkedList(Collection<? extends E> c) {
this();
addAll(c);
}
/**
* 默认数组长度
*/
public ArrayLinkedList(){
this(10);
}
/**
* 初始化数组.
* 除header,其他都是备用链表的元素
* 实际链表此时为空。数据项都为空
*/
private void initArray(int initialCapacity) {
data = new Object[initialCapacity];
for(int i = 0 ;i < data.length;i++){
if(freeHeader==null){
freeHeader = new Entry<E>(null, i, i+2, data.length-1);
data[i] = freeHeader;
continue;
}
if(header == null){
header = new Entry<E>(null, i, i, i);
//初始实际链表头结点,此链表为空
data[i] = header;
continue;
}
Entry<E> e = new Entry<E>(null, i,
i+1==data.length ? 0 : i+1, i-1 == 1 ? 0 : i-1);
data[i] = e;
}
}
/**
* 获取一个备用链表的节点
* */
public int getFreeNode(){
int i = freeHeader.next;
if(i > 0 ){
Entry e = (Entry)data[i];
freeHeader.next = e.next;
((Entry)data[e.next]).pre = freeHeader.cur;
}
return i;
}
/**
* 将空闲节点回收到备用链表
* */
public void free(Entry<E> e){
e.next = freeHeader.next;
e.pre = freeHeader.cur;
freeHeader.next = e.cur;
e.element = null;
}
public void ensureCapacity(int minCapacity) {
modCount++;
int oldCapacity = data.length;
if (minCapacity > oldCapacity) {
int newCapacity = (oldCapacity * 3) / 2 + 1;
if (newCapacity < minCapacity)
newCapacity = minCapacity;
data = Arrays.copyOf(data, newCapacity);
//初始化增加的节点
for(int i = oldCapacity; i < newCapacity;i++){
Entry<E> e = new Entry<E>(null, i,
i+1==data.length ? 0 : i+1, i-1 == 1 ? 0 : i-1);
data[i] = e;
//修改备用头结点
freeHeader.pre = newCapacity - 1;
freeHeader.next = oldCapacity;
}
}
}
public E getFirst(){
if(size == 0)
throw new NoSuchElementException();
return ((Entry<E>)data[header.next]).element;
}
public E getLast(){
if(size == 0)
throw new NoSuchElementException();
return ((Entry<E>)data[header.pre]).element;
}
/**
* 移除第一个元素,具体见remove()方法
*/
public E removeFirst() {
return remove((Entry<E>)data[header.next]);
}
/**
* 移除最后一个元素
*/
public E removeLast() {
return remove((Entry<E>)data[header.pre]);
}
/**
*
* 在链表开始位置添加一个元素
* 详情见addBefore()
*/
public void addFirst(E e) {
addBefore(e, (Entry<E>)data[header.next]);
}
/**
* 在链表最后位置添加一个元素
* 详情见addBefore()
*/
public void addLast(E e) {
addBefore(e, header);
}
/**
* 查看链表是否包含元素o
* 详细见indexOf()方法
*/
public boolean contains(Object o) {
return indexOf(o) != -1;
}
/**
*
* 返回o第一次出现的位置,如果在List中找不到o返回-1
*/
public int indexOf(Object o) {
int index = 0;
//链表的索引也是从0开始
if (o == null) {
for (Entry e = (Entry)data[header.next]; e != header; e = (Entry)data[e.next]) {
//从头结点开始,依次遍历
if (e.element == null)
return index;
index++;
}
} else {
for (Entry e = (Entry)data[header.next]; e != header; e = (Entry)data[e.next]) {
if (o.equals(e.element))
return index;
index++;
}
}
return -1;
}
/**
* 双向循环链表,从后面开始遍历即可
*/
public int lastIndexOf(Object o) {
int index = size;
if (o == null) {
for (Entry e = (Entry)data[header.pre]; e != header; e = (Entry)data[e.pre]) {
index--;
if (e.element == null)
return index;
}
} else {
for (Entry e = (Entry)data[header.pre]; e != header; e = e = (Entry)data[e.pre]) {
index--;
if (o.equals(e.element))
return index;
}
}
return -1;
}
/**
* 跟addLast()方法类似,添加成功返回true
*/
public boolean add(E e) {
addBefore(e, header);
return true;
}
/**
* 假如链表中含有一个或多个o对象,移除第一次出现的o
* 如果找不到o返回false
*/
public boolean remove(Object o) {
if (o == null) {
for (Entry<E> e = (Entry<E>)data[header.next]; e != header; e = (Entry<E>)data[e.next]) {
//从第一个元素开始遍历,没一个Entry对象都包含它下一个元素的信息
if (e.element == null) {
remove(e);
return true;
}
}
} else {
for (Entry<E> e = (Entry<E>)data[header.next]; e != header; e = (Entry<E>)data[e.next]) {
if (o.equals(e.element)) {
remove(e);
return true;
}
}
}
return false;
}
/**
*
* 把c中所有元素按顺序添加到链表尾部
*/
public boolean addAll(Collection<? extends E> c) {
return addAll(size, c);
}
/**
*
* 在指定位置按顺序添加c中所有元素带List中
*
*/
public boolean addAll(int index, Collection<? extends E> c) {
if (index < 0 || index > size)
//检查是否越界,=size表示添加到最后
throw new IndexOutOfBoundsException("Index: " + index + ", Size: "
+ size);
Object[] a = c.toArray();
int numNew = a.length;
if (numNew == 0)
return false;
ensureCapacity(size + numNew + 2);
Entry<E> successor = (index == size ? header : entry(index));
Entry<E> predecessor = (Entry<E>)data[successor.pre];
for (int i = 0; i < numNew; i++) {
//这里不难,画一个图就出来了,主要是初始化c和修改指针
//暂时使其next为successor,因为e会赋给前驱,而每次遍历都要修改其前驱的next
int node = getFreeNode();
Entry<E> e = (Entry<E>)data[node];
e.next = successor.cur;
e.pre = predecessor.cur;
e.element = (E)a[i];
predecessor.next = e.cur; //重新设置前驱的next指针
predecessor = e;
//让e变为前驱
}
successor.pre = predecessor.cur;
//successor的前驱为c中最后一个元素的引用
size += numNew;
//长度加
return true;
}
/**
* 移除链表中所有元素
*/
public void clear() {
Entry<E> e = (Entry<E>)data[header.next];
while (e != header) {
//表示不是只有一个头结点的空链表
Entry<E> next = (Entry<E>)data[e.next];
free(e);
e = next;
}
header.next = header.pre = header.cur = 1;
//初始头结点
size = 0;
modCount++;
}
/**
* 返回指定位置的元素时
*/
public E get(int index) {
return entry(index).element;
}
/**
* 设置指定位置的元素
*/
public E set(int index, E element) {
Entry<E> e = entry(index);
E oldVal = e.element;
e.element = element;
return oldVal;
}
/**
*
* 把指定元素添加到指定位置,需先定位到此位置的节点
* 详情见addBefore()
*/
public void add(int index, E element) {
addBefore(element, (index == size ? header : entry(index)));
}
/**
* 移除指定位置的元素
*/
public E remove(int index) {
return remove(entry(index));
}
/**
*
* 返回指定索引位置的Entry对象,需要依次遍历得到。
* 这里稍做了一下优化,如果index < size/2 从前面开始遍历
* 如果index >= size/2 从后面开始遍历
*/
private Entry<E> entry(int index) {
if (index < 0 || index >= size)
//index在0(包含)到size(不包含)之间,索引从0开始
throw new IndexOutOfBoundsException("Index: " + index + ", Size: "
+ size);
Entry<E> e = header;
if (index < (size >> 1)) {
for (int i = 0; i <= index; i++)
e = (Entry<E>)data[e.next];
//依次调用e.next才能得到,需调用index+1次,因为它是从头结点开始的
} else {
for (int i = size; i > index; i--)
e = (Entry<E>)data[e.pre]; //依次调用e.previous才能得到
}
return e;
}
private Entry<E> addBefore(E e,Entry<E> entry){
ensureCapacity(size + 1 + 2);
int node = getFreeNode();
Entry<E> newEntry = (Entry<E>)data[node];
newEntry.element = e;
newEntry.cur = node;
newEntry.pre = entry.pre;
newEntry.next = entry.cur;
((Entry<E>)data[newEntry.pre]).next = node;
((Entry<E>)data[newEntry.next]).pre = node;
size++;
return newEntry;
}
private E remove(Entry<E> e){
if(e == header)
throw new NoSuchElementException();
E result = e.element;
//改变实际链表的节点指针
((Entry<E>)data[e.pre]).next = e.next;
((Entry<E>)data[e.next]).pre = e.pre;
free(e);
size--;
//size--
modCount++;
return result;
}
@Override
public ListIterator<E> listIterator(int index) {
return new ListItr(index);
}
@Override
public int size() {
// TODO Auto-generated method stub
return size;
}
private static class Entry<E>{
E element;
int next;
int pre;
int cur;
Entry(E element,int cur,int next,int pre){
this.element = element;
this.next = next;
this.pre = pre;
this.cur = cur;
}
public String toString(){
return "element:"+ element +" cur:"+cur+" next:"+next+" pre:"+pre;
}
}
private class ListItr implements ListIterator<E> {
private Entry<E> lastReturned = header;
//上一次调用next或previous返回的元素,没有调用next则为头结点
private Entry<E> next;
//下一次调用next方法返回的元素
private int nextIndex;
//下一次调用next返回的元素的索引
private int expectedModCount = modCount;
//用来检测遍历过程中是否产生了并发操作
ListItr(int index) {
//构造器,是迭代器定位到index位置,要返回index位置的元素需调用一次next()方法时
if (index < 0 || index > size)
throw new IndexOutOfBoundsException("Index: " + index
+ ", Size: " + size);
if (index < (size >> 1)) {
//从前面开始遍历
next = (Entry<E>)data[header.next];
//这是index为0的元素
for (nextIndex = 0; nextIndex < index; nextIndex++)
next = (Entry<E>)data[next.next];
//最终next为第index个元素,index从0开始
} else {
//从后面开始遍历
next = header;
for (nextIndex = size; nextIndex > index; nextIndex--)
next = (Entry<E>)data[next.pre];
//最终next为第index个元素,index从0开始
}
}
public boolean hasNext() {
//size位置可没有元素
return nextIndex != size;
}
public E next() {
checkForComodification();
if (nextIndex == size)
throw new NoSuchElementException();
lastReturned = next;
next = (Entry<E>)data[next.next];
//这里与ArrayList中的cursor何其相似
nextIndex++;
return lastReturned.element;
}
public boolean hasPrevious() {
return nextIndex != 0;
}
public E previous() {
if (nextIndex == 0)
throw new NoSuchElementException();
lastReturned = next = (Entry<E>)data[next.pre];
nextIndex--;
checkForComodification();
return lastReturned.element;
}
public int nextIndex() {
//返回下一次调用next返回的元素的索引
return nextIndex;
}
public int previousIndex() {
//返回下一次调用previous返回的元素的索引
return nextIndex - 1;
}
public void remove() {
checkForComodification();
Entry<E> lastNext = (Entry)data[lastReturned.next];
try {
ArrayLinkedList.this.remove(lastReturned);
//移除上一层调用next()或previous返回的元素
} catch (NoSuchElementException e) {
throw new IllegalStateException();
}
if (next == lastReturned)
//表明是调用previous后才调用remove方法
next = lastNext;
else
nextIndex--;
//元素减少。nextIndex--
lastReturned = header;
//重置lastReturned
expectedModCount++;
}
public void set(E e) {
if (lastReturned == header)
throw new IllegalStateException();
checkForComodification();
lastReturned.element = e;
}
public void add(E e) {
checkForComodification();
lastReturned = header;
addBefore(e, next);
//在上一次调用next返回的元素之后,在上次调用previous返回的元素之前添加e
nextIndex++;
//元素增加,索引增加,保证下次调用next()不是返回添加的元素
expectedModCount++;
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
}