2 000011 0101
Case #1: 26 Case #2: 10
题意:给你一个01字符串,要求最多改变一个字符(即0->1或1->0),使相邻相同字符的平方和最大
比如说字符串000 11 0
3 2 1
平方和为3*3+2*2+1*1=14
解题思路:其实此题还是暴力求解的,首先我们把相邻相同的字符分块,即上述的3 2 1,然后对于第i个分块与第i+1个分块,枚举(第i个分块字符个数+1和第i+1个分块字符个数-1)的情况与(第i个分块字符个数-1和第i+1个分块字符个数+1)的情况,需注意的是当第i+1个分块若只有一个字符,那么第i个分块、第i+1个分块、第i+2个分块会合成一个分块,同理,当第i个分块只有一个字符时,第i-1个分块、第i个分块、第i+1个分块会合成一个分块,我们更新最大值就可以了
#pragma comment(linker, "/STACK:1024000000,1024000000") #include<stdio.h> #include<string.h> #include<stdlib.h> #include<queue> #include<stack> #include<math.h> #include<vector> #include<map> #include<set> #include<stdlib.h> #include<cmath> #include<string> #include<algorithm> #include<iostream> #define exp 1e-10 #define MAX(a,b) ((a)>(b)?(a):(b)) using namespace std; const int N = 100005; const int M = 2010; const int inf = 2147483647; const int mod = 2009; __int64 s[N]; char num[N]; int main() { int t,i,j,p=1; __int64 ans,Max,k; scanf("%d",&t); while(t--) { scanf("%s",num); for(ans=0,j=1,k=1,i=1;num[i]!='\0';i++) if(num[i]!=num[i-1]) s[j++]=k,ans+=k*k,k=1; else k++; s[j++]=k;ans+=k*k;s[j++]=0;Max=ans; //printf("%I64d\n",Max); for(i=1;i<j-2;i++) { //printf("%d %d\n",s[i],s[i+1]); if(s[i+1]==1) Max=max(Max,ans-s[i]*s[i]-s[i+1]*s[i+1]-s[i+2]*s[i+2]+(s[i]+s[i+1]+s[i+2])*(s[i]+s[i+1]+s[i+2])); else Max=max(Max,ans-s[i]*s[i]-s[i+1]*s[i+1]+(s[i]+1)*(s[i]+1)+(s[i+1]-1)*(s[i+1]-1)); //printf("###%d %I64d\n",i,Max); if(s[i]==1) Max=max(Max,ans-s[i]*s[i]-s[i+1]*s[i+1]-s[i-1]*s[i-1]+(s[i]+s[i+1]+s[i-1])*(s[i]+s[i+1]+s[i-1])); else Max=max(Max,ans-s[i]*s[i]-s[i+1]*s[i+1]+(s[i]-1)*(s[i]-1)+(s[i+1]+1)*(s[i+1]+1)); //printf("@@@@%d %I64d\n",i,Max); } printf("Case #%d: %I64d\n",p++,Max); } return 0; }菜鸟成长记