Given a set S = {1, 2, ..., n}, number m and p, your job is to count how many set T satisfies the following condition:
There are multiple cases, each contains 3 integers n ( 1 <= n <= 109 ), m ( 0 <= m <= 104, m <= n ) and p ( p is prime, 1 <= p <= 109 ) in one line seperated by a single space, proceed to the end of file.
Output the total number mod p.
5 1 11 5 2 11
5 6
这个题也是找规律。
规律其实很简单,就是一个组合数:C(n-m+1,m)
但是注意一下当n-m+1<m的时候输出0。
当然,组合数取余,自然要用到lucas定理咯~
代码:
#include<stdio.h> #include<string.h> #include<iostream> using namespace std; typedef long long ll; ll power(ll p,ll n,ll m) { ll sq=1; while(n) { if(n%2==1) sq=(sq%m)*(p%m)%m; p=(p%m)*(p%m)%m; n=n/2; } return sq%m; } ll C(ll n,ll r,ll p) { ll i,res=1,t; for(i=1;i<=r;i++) { res=(res%p)*((n-i+1)%p)%p; t=power(i,p-2,p); res=(res%p)*(t%p)%p; } return res; } ll lucas(ll n,ll r,ll p) { if(n<r) return 0; return C(n,r,p); } int main() { ll n,m,p,res,x,y; while(cin>>n>>m>>p) { if(n==0&&m==0&&p==0) break; res=1; x=n-m+1; y=m; if(x<y) { cout<<0<<endl; continue; } while(x&&y) { res=res*lucas(x%p,y%p,p)%p; if(res==0) break; x=x/p; y=y/p; } cout<<res<<endl; } return 0; }