1.1 cpu使用问题
#include <iostream> #include <ctime> #include <cmath> #include <Windows.h> using namespace std; //第一种方式 void main() { INT64 start=0; int busy=10; int idle=busy; cout<<"CPU使用率问题"; while(true) { start=GetTickCount(); while((GetTickCount()-start)<=busy); Sleep(idle); } } //第二种方式 int main() { for(;;) { for(int i = 0; i < 9600000; i++); //for(int i = 0; i < 21360000; i++);//2.67Ghz 4核 Sleep(10); } return 0; } //正玄曲线 const double SPLIT=0.01; const int COUNT=200; const double PI=3.14159265; const int INTERVAL = 300; void main() { DWORD busy[COUNT],idle[COUNT]; int half=INTERVAL/2; double radian=0.0; for(int i=0;i<COUNT;i++) { busy[i]=DWORD(sin(PI*radian)*half+half); idle[i]=INTERVAL-busy[i]; radian+=0.01; } DWORD start=0; int j=0; while(true) { start=GetTickCount(); j=j%COUNT; while((GetTickCount()-start)<=busy[j]); Sleep(idle[j]); j++; } }CPU核心运行周期数
#include <iostream> using namespace std; inline __int64 GetCPUTickCount() { __asm { rdtsc; } } void main() { cout<<"CPU核心运行周期数"<<GetCPUTickCount()<<endl; system("pause"); }
1.2 将帅问题
#include <iostream> using namespace std; //第一种方式 struct { unsigned char a:4; unsigned char b:4; } i; void main() { for(i.a = 1; i.a <= 9; i.a++) for(i.b = 1; i.b <= 9; i.b++) if(i.a % 3 != i.b % 3) printf("A = %d, B = %d\n", i.a, i.b); system("pause"); } //第二种方式 #define HALF_BITS_LENGTH 4 // 这个值是记忆存储单元长度的一半,在这道题里是4bit #define FULLMASK 255 // 这个数字表示一个全部bit的mask,在二进制表示中,它是11111111。 #define LMASK (FULLMASK << HALF_BITS_LENGTH) // 这个宏表示左bits的mask,在二进制表示中,它是11110000。 #define RMASK (FULLMASK >> HALF_BITS_LENGTH) // 这个数字表示右bits的mask,在二进制表示中,它表示00001111。 #define RSET(b, n) (b = ((LMASK & b) ^ n)) // 这个宏,将b的右边设置成n #define LSET(b, n) (b = ((RMASK & b) ^ (n << HALF_BITS_LENGTH))) // 这个宏,将b的左边设置成n #define RGET(b) (RMASK & b) // 这个宏得到b的右边的值 #define LGET(b) ((LMASK & b) >> HALF_BITS_LENGTH) // 这个宏得到b的左边的值 #define GRIDW 3 // 这个数字表示将帅移动范围的行宽度。 #include <stdio.h> #define HALF_BITS_LENGTH 4 #define FULLMASK 255 #define LMASK (FULLMASK << HALF_BITS_LENGTH) #define RMASK (FULLMASK >> HALF_BITS_LENGTH) #define RSET(b, n) (b = ((LMASK & b) ^ n)) #define LSET(b, n) (b = ((RMASK & b) ^ (n << HALF_BITS_LENGTH))) #define RGET(b) (RMASK & b) #define LGET(b) ((LMASK & b) >> HALF_BITS_LENGTH) #define GRIDW 3 int main() { unsigned char b; for(LSET(b, 1); LGET(b) <= GRIDW * GRIDW; LSET(b, (LGET(b) + 1))) for(RSET(b, 1); RGET(b) <= GRIDW * GRIDW; RSET(b, (RGET(b) + 1))) if(LGET(b) % GRIDW != RGET(b) % GRIDW) printf("A = %d, B = %d\n", LGET(b), RGET(b)); system("pause"); return 0; }
1.8 电梯调度
#include <iostream> using namespace std; #define N 6 void main() { int nPerson[N]={55,66,77,88,99,44}; int N1=0,N2=0,N3=0; int nTargetFloor=0,nMinFloor=0,i; for (i=1,N1=0,N2=nPerson[0],N3=0;i<N;i++) { N3+=nPerson[i]; nMinFloor+=nPerson[i+1]*i; } for (i=1;i<N;i++) { if (N1+N2<N3) { nTargetFloor=i+1; nMinFloor+=(N1+N2-N3); N1+=N2; N2=nPerson[i]; N3-=nPerson[i]; } else break; } cout<<"nTargetFloor "<<nTargetFloor<<"\nnMinFloor "<<nMinFloor<<endl; system("pause"); }
1.13 NIM两堆石头
#include <iostream> #include <cmath> using namespace std; #define swap(x,y) ((x)^=(y),(y)^=(x),(x)^=(y)) void main() { double a,b; a=(1+sqrt(5.0))/2; b=(3+sqrt(5.0))/2; int m,n; bool nim=false; cout<<"输入两堆石头的书数目\n"; cin>>m>>n; if (m==n) nim=true; if(n>m) swap(n,m); if (n-m==(long)floor(n*a)) nim=false; else nim=true; if(nim) cout<<"先取石头玩家先赢\n"; else cout<<"后取石头玩家先赢\n"; system("pause"); }
1.16 24点游戏
#include <iostream> #include <string> #include <cmath> #include <stdlib.h> using namespace std; const double PRECISION = 1E-6; const int COUNT_OF_NUMBER = 4; const int NUMBER_TO_CAL = 24; double number[COUNT_OF_NUMBER]; string expression[COUNT_OF_NUMBER]; bool Search(int n) { if (n == 1) { if ( fabs(number[0] - NUMBER_TO_CAL) < PRECISION ) { cout << expression[0] << endl; return true; } else { return false; } } for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { double a, b; string expa, expb; a = number[i]; b = number[j]; number[j] = number[n - 1]; expa = expression[i]; expb = expression[j]; expression[j] = expression[n - 1]; expression[i] = '(' + expa + '+' + expb + ')'; number[i] = a + b; if ( Search(n - 1) ) return true; expression[i] = '(' + expa + '-' + expb + ')'; number[i] = a - b; if ( Search(n - 1) ) return true; expression[i] = '(' + expb + '-' + expa + ')'; number[i] = b - a; if ( Search(n - 1) ) return true; expression[i] = '(' + expa + '*' + expb + ')'; number[i] = a * b; if ( Search(n - 1) ) return true; if (b != 0) { expression[i] = '(' + expa + '/' + expb + ')'; number[i] = a / b; if ( Search(n - 1) ) return true; } if (a != 0) { expression[i] = '(' + expb + '/' + expa + ')'; number[i] = b / a; if ( Search(n - 1) ) return true; } number[i] = a; number[j] = b; expression[i] = expa; expression[j] = expb; } } return false; } int main() { for (int i = 0; i < COUNT_OF_NUMBER; i++) { char buffer[20]; int x; cin >> x; number[i] = x; itoa(x, buffer, 10); expression[i] = buffer; } if ( Search(COUNT_OF_NUMBER) ) { cout << "Success." << endl; } else { cout << "Fail." << endl; } return 0; }
2.2阶乘
void countZero() { //100!末尾有多少个0 int num,i,count=0; printf("Input a num as num!\n"); scanf("%d",&num); for(i=5;i<=num;i+=5) { count++; if(!(num%25)) count++; } printf("end of %d! has %d zero\n",num,count); count=0; while(num) { num/=2; count+=num; } printf("n! last one %d\n",count+1);//n!最低位1的位置 等同于求n!中有多少个质因数2 } int main() { countZero();//计算100!末尾0的个数 return 0; }
2.4 1的数目
int count1Int(int i) { int numi=0; while(i!=0) { numi+=(i%10==1)?1:0; i/=10; } return numi; } void countOne() { int i,n,count=0; printf("please input a number\n"); scanf("%d",&n); for(i=1;i<=n;i++) count+=count1Int(i); printf("count one %d",count); } int main() { countOne();//一的数目 return 0; }
2.7 最大公约数最小公倍数求解
2.13 子数组最大乘积
#include <iostream> #include <stdlib.h> #include <stdio.h> using namespace std; // 子数组的最大乘积 int MaxProduct(int *a, int n) { int maxProduct = 1; // max positive product at current position int minProduct = 1; // min negative product at current position int r = 1; // result, max multiplication totally for (int i = 0; i < n; i++) { if (a[i] > 0) { maxProduct *= a[i]; minProduct = min(minProduct * a[i], 1); } else if (a[i] == 0) { maxProduct = 1; minProduct = 1; } else // a[i] < 0 { int temp = maxProduct; maxProduct = max(minProduct * a[i], 1); minProduct = temp * a[i]; } r = max(r, maxProduct); } return r; } int main(int argc, char* argv[]) { int a[]={1, -2, -1,0,5}; int result = MaxProduct(a,5); cout<<result<<endl; system("pause"); return 0; }
2.14 求子数组最大和
给一个数组,元素都是整数(有正数也有负数),寻找连续的元素相加之和为最大的序列。
3.2 电话号码对应英语单词并实现从数字字典中查询
#include <iostream> using namespace std; #define telLen 3 void match(char *words) { char *word="YES YER"; if(strstr(word,words)) { printf("words %s\n",words); } } void main() { char word[telLen+1]={0};//存储生成的每个单词 char c[10][10]={"","","ABC","DEF","GHI","JKL","MNO","PQRS","TUV","WXYZ"};//0到9数字所表示的字母 int total[10]={0,0,3,3,3,3,3,4,3,4};//每个数字里包含的字母个数 int number[telLen]={9,3,7};//电话号码 int answer[10]={0};//数组记录每个字母在它所在的数字键能代表的字符集中的偏移(索引),初始化为0 int i,j=0; while(true) { for (i=0;i<telLen;i++) { if(number[i]==1||number[i]==0)//忽略空格的影响 break; else { printf("%c",c[number[i]][answer[i]]); word[i]=c[number[i]][answer[i]]; } } word[telLen]='\0'; match(word);//在数据字典中匹配 printf("\n"); int k=telLen-1; while(k>=0) { if (answer[k]<total[number[k]]-1) { answer[k]++; break; } else { answer[k]=0; k--; } } if (k<0) break; } system("pause"); }
3.6 编程判断两个链表是否相交
3.8 二叉树中的一些问题
3.9 重建二叉树
#include <stdio.h> #include <stdlib.h> #include <string.h> typedef struct Node { char chValue; struct Node *lChild; struct Node *rChild; }Node; //重建二叉树 void Rebuild(char *pPreOrder , char *pInOrder , Node **pRoot , int nTreeLen) { int nLeftLen , nRightLen; char *pLeftEnd; Node *p; //边界条件检查 if(!pPreOrder || !pInOrder || !pRoot) return; if(!(p = (Node *)malloc(sizeof(Node)))) return; p->chValue = *pPreOrder; p->lChild = p->rChild = NULL; *pRoot = p; if(nTreeLen == 1) return; //划分左右子数 pLeftEnd = pInOrder; while(*pLeftEnd != *pPreOrder) pLeftEnd++; nLeftLen = (int)(pLeftEnd - pInOrder); nRightLen = nTreeLen - nLeftLen - 1; if(nLeftLen) Rebuild(pPreOrder + 1 , pInOrder , &(p->lChild) , nLeftLen); if(nRightLen) Rebuild(pPreOrder + nLeftLen + 1, pInOrder + nLeftLen + 1 , &(p->rChild) , nRightLen); } //后序遍历 void PostOrder(Node *p) { if(p) { PostOrder(p->lChild); PostOrder(p->rChild); printf("%c",p->chValue); } } int main(void) { char PreOrder[32] , InOrder[32]; Node *pTree; //输入先序和中序序列 while(scanf("%s%s", PreOrder , InOrder) != EOF)//abdcef dbaecf { Rebuild(PreOrder , InOrder , &pTree , strlen(PreOrder)); PostOrder(pTree); printf("\n"); } return 0; }
4.9 数独的构造
#include <iostream> #include <cstdlib> #include <cstring> using namespace std; /*问题: 构造一个9*9的方格矩阵,玩家要在每个方格中,分别填上1至9的任意一个数字, 让整个棋盘每一列、每一行以及每一个3*3的小矩阵中的数字都不重复。 首先我们通过一个深度优先搜索来生成一个可行解,然后随机删除一定数量的数字, 以生成一个数独。*/ #define LEN 9 #define CLEAR(a) memset((a), 0, sizeof(a)) int level[] = {30, 37, 45}; int grid[LEN+1][LEN+1]; int value[LEN+1]; void next(int &x, int &y) { x++; if (x>9) { x = 1; y++; } } // 选择下一个有效状态 int pickNextValidValue(int x, int y, int cur) { CLEAR(value); int i, j; for (i=1; i<y; i++) value[grid[i][x]] = 1; for (j=1; j<x; j++) value[grid[y][j]] = 1; int u = (x-1)/3*3 + 1; int v = (y-1)/3*3 + 1; for (i=v; i<v+3; i++) for (j=u; j<u+3; j++) { value[grid[i][j]] = 1; } for (i=cur+1; i<=LEN && value[i]; i++); return i; } void pre(int &x, int &y) { x--; if (x<1) { x = 9; y--; } } int times = 0; int main() { int x, y, i, j; x = y = 1; // 深度搜索的迭代算法 while (true) { times++; // 满足成功结果 if (y==LEN && x==LEN) { for (i=1; i<=LEN; i++) { for (j=1; j<=LEN; j++) cout << grid[i][j] << " "; cout << endl; } cout << times << endl; break; //pre(x, y); //times = 0; } // 满足失败结果 if (y==0) break; // 改变状态 grid[y][x] = pickNextValidValue(x, y, grid[y][x]); if (grid[y][x] > LEN) { // 恢复状态 grid[y][x] = 0; pre(x, y); } else // 进一步搜索 next(x,y); } for (i=1; i<= level[2]; i++) { int ind = rand()%(LEN*LEN); grid[ind/LEN+1][ind%LEN] = 0; } for (i=1; i<=LEN; i++) { for (j=1; j<=LEN; j++) cout << grid[i][j] << " "; cout << endl; } system("pause"); }
#include<iostream> #include<string> using namespace std; // 题目:人过大佛寺*我=寺佛大过人. 其中每个字母代表着一个不同的数字. int main() { bool flag; bool IsUsed[10]; int number,revert_number,t,v; for(number=0;number<100000;number++) { flag=true; memset(IsUsed,0,sizeof(IsUsed)); t=number; revert_number=0; for(int i=0;i<5;i++) { v=t%10; revert_number=revert_number*10+v; t/=10; if(IsUsed[v]) flag=false; else IsUsed[v]=1; } if(flag&&(revert_number%number==0)) { v=revert_number/number; if(v<10&&!IsUsed[v]) cout<<number<<" "<<v<<" "<<revert_number<<endl; } } system("pause"); return 0; }
编程之美 完
以上有些代码参考《编程之美》还有一些是参考网络上的,剩下的是自己编写的。