Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 1659 | Accepted: 831 |
Description
We give the following inductive definition of a “regular brackets” sequence:
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])]
, the longest regular brackets subsequence is [([])]
.
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (
, )
, [
, and ]
; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((())) ()()() ([]]) )[)( ([][][) end
Sample Output
6 6 4 0 6
Source
#include<stdio.h> #include<string.h> int dp[105][105]; char str[105]; bool match(char a,char b) { if(a=='('&&b==')') return true; if(a=='['&&b==']') return true; return false; } int main() { int i,j,k,l,t; while(scanf("%s",str)!=EOF) { if(strcmp(str,"end")==0) break; memset(dp,0,sizeof(dp)); l=strlen(str); for(k=2;k<=l;k++) { for(i=0;i+k-1<l;i++) { t=i+k-1; for(j=i;j<t;j++) { if(dp[i][t]<dp[i][j]+dp[j+1][t]) dp[i][t]=dp[i][j]+dp[j+1][t]; if(match(str[i],str[t])) { if(dp[i][t]<dp[i+1][t-1]+2) dp[i][t]=dp[i+1][t-1]+2; } } } } printf("%d/n",dp[0][l-1]); } return 0; }