从来没有写过源码阅读,这种感觉越来越强烈,虽然劣于文笔,但还是下定决心认真写一回。
源代码下载请参见上一篇flashcache之我见 http://blog.csdn.net/liumangxiong/article/details/11643473
下面代码对应的是tag下面的1.0版本的。
看内核模块源码,闭着眼睛打开flashcache_init函数,区区百来行代码何足惧也。
1963int __init
1964flashcache_init(void)
1965{
1966 int r;
1967
1968 r = flashcache_jobs_init();
1969 if (r)
1970 return r;
1971 atomic_set(&nr_cache_jobs, 0);
1972 atomic_set(&nr_pending_jobs, 0);
1973#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
1974 INIT_WORK(&_kcached_wq, do_work, NULL);
1975#else
1976 INIT_WORK(&_kcached_wq, do_work);
1977#endif
1978 for (r = 0 ; r < 33 ; r++)
1979 size_hist[r] = 0;
1980 r = dm_register_target(&flashcache_target);
1981 if (r < 0) {
1982 DMERR("cache: register failed %d", r);
1983 }
1984#ifdef CONFIG_PROC_FS
1985#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,27)
1986 flashcache_table_header =
1987 register_sysctl_table(flashcache_root_table, 1);
1988#else
1989 flashcache_table_header =
1990 register_sysctl_table(flashcache_root_table);
1991#endif
1992 {
1993 struct proc_dir_entry *entry;
1994
1995 entry = create_proc_entry("flashcache_stats", 0, NULL);
1996 if (entry)
1997 entry->proc_fops = &flashcache_stats_operations;
1998 entry = create_proc_entry("flashcache_errors", 0, NULL);
1999 if (entry)
2000 entry->proc_fops = &flashcache_errors_operations;
2001 entry = create_proc_entry("flashcache_iosize_hist", 0, NULL);
2002 if (entry)
2003 entry->proc_fops = &flashcache_iosize_hist_operations;
2004 entry = create_proc_entry("flashcache_pidlists", 0, NULL);
2005 if (entry)
2006 entry->proc_fops = &flashcache_pidlists_operations;
2007 entry = create_proc_entry("flashcache_version", 0, NULL);
2008 if (entry)
2009 entry->proc_fops = &flashcache_version_operations;
2010 }
2011#endif
2012 flashcache_control = (struct flashcache_control_s *)
2013 kmalloc(sizeof(struct flashcache_control_s *), GFP_KERNEL);
2014 flashcache_control->synch_flags = 0;
2015 register_reboot_notifier(&flashcache_notifier);
2016 return r;
2017}
先大致看一眼,flashcache_jobs_init()分配job内存结构的,INIT_WORK初始化WORK的,接下来一看proc字眼就知道是/proc下目录的文件,再后来创建一个flashcache_control_s管理结构,再注册一个关机回调函数。
这样就走马观花地把这个函数看完了,那让写代码的人情何以堪?
再问一下自己,flashcache究竟做了什么?脑子里还是一片空白。那接下来就到每个函数内探个究竟。
441static int
442flashcache_jobs_init(void)
443{
444#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,27)
445 _job_cache = kmem_cache_create("kcached-jobs",
446 sizeof(struct kcached_job),
447 __alignof__(struct kcached_job),
448 0, NULL, NULL);
449#else
450 _job_cache = kmem_cache_create("kcached-jobs",
451 sizeof(struct kcached_job),
452 __alignof__(struct kcached_job),
453 0, NULL);
454#endif
455 if (!_job_cache)
456 return -ENOMEM;
457
458 _job_pool = mempool_create(MIN_JOBS, mempool_alloc_slab,
459 mempool_free_slab, _job_cache);
460 if (!_job_pool) {
461 kmem_cache_destroy(_job_cache);
462 return -ENOMEM;
463 }
464#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,27)
465 _pending_job_cache = kmem_cache_create("pending-jobs",
466 sizeof(struct pending_job),
467 __alignof__(struct pending_job),
468 0, NULL, NULL);
469#else
470 _pending_job_cache = kmem_cache_create("pending-jobs",
471 sizeof(struct pending_job),
472 __alignof__(struct pending_job),
473 0, NULL);
474#endif
475 if (!_pending_job_cache) {
476 mempool_destroy(_job_pool);
477 kmem_cache_destroy(_job_cache);
478 return -ENOMEM;
479 }
480
481 _pending_job_pool = mempool_create(MIN_JOBS, mempool_alloc_slab,
482 mempool_free_slab, _pending_job_cache);
483 if (!_pending_job_pool) {
484 kmem_cache_destroy(_pending_job_cache);
485 mempool_destroy(_job_pool);
486 kmem_cache_destroy(_job_cache);
487 return -ENOMEM;
488 }
489
490 return 0;
491}
首先是flashcache_jobs_init()函数,该函数里创建了两类job和两类的mem_pool,就像双胞胎看起来一样,实际上并不一样。
_job_pool => flashcache_alloc_cache_job => new_kcached_job 调用new_kcached_job 有好多个,有flashcache_dirty_writeback、flashcache_read_hit、flashcache_read_miss、flashcache_write_miss、flashcache_write_hit、flashcache_dirty_writeback_sync、flashcache_start_uncached_io。如果仔细地看一下这些函数的名称,发现这些函数所做的事情正是一个写缓存的基本操作和动作,即writeback, writethrough, hit, miss。
现在就以flashcache_dirty_writeback为例,看看到底在kcacheed_job起了什么作用?
944static void
945flashcache_dirty_writeback(struct cache_c *dmc, int index)
946{
947 struct kcached_job *job;
948 unsigned long flags;
949 struct cacheblock *cacheblk = &dmc->cache[index];
950 int device_removal = 0;
951
952 DPRINTK("flashcache_dirty_writeback: Index %d", index);
953 spin_lock_irqsave(&dmc->cache_spin_lock, flags);
954 VERIFY((cacheblk->cache_state & BLOCK_IO_INPROG) == DISKWRITEINPROG);
955 VERIFY(cacheblk->cache_state & DIRTY);
956 dmc->cache_sets[index / dmc->assoc].clean_inprog++;
957 dmc->clean_inprog++;
958 spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
959 job = new_kcached_job(dmc, NULL, index);
960 if (unlikely(sysctl_flashcache_error_inject & DIRTY_WRITEBACK_JOB_ALLOC_FAIL)) {
961 if (job)
962 flashcache_free_cache_job(job);
963 job = NULL;
964 sysctl_flashcache_error_inject &= ~DIRTY_WRITEBACK_JOB_ALLOC_FAIL;
965 }
966 /*
967 * If the device is being (fast) removed, do not kick off any more cleanings.
968 */
969 if (unlikely(atomic_read(&dmc->fast_remove_in_prog))) {
970 DMERR("flashcache: Dirty Writeback (for set cleaning) aborted for device removal, block %lu",
971 cacheblk->dbn);
972 if (job)
973 flashcache_free_cache_job(job);
974 job = NULL;
975 device_removal = 1;
976 }
977 if (unlikely(job == NULL)) {
978 spin_lock_irqsave(&dmc->cache_spin_lock, flags);
979 dmc->cache_sets[index / dmc->assoc].clean_inprog--;
980 dmc->clean_inprog--;
981 flashcache_free_pending_jobs(dmc, cacheblk, -EIO);
982 cacheblk->cache_state &= ~(BLOCK_IO_INPROG);
983 spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
984 if (device_removal == 0)
985 DMERR("flashcache: Dirty Writeback (for set cleaning) failed ! Can't allocate memory, block %lu",
986 cacheblk->dbn);
987 } else {
988 job->bio = NULL;
989 job->action = WRITEDISK;
990 atomic_inc(&dmc->nr_jobs);
991 dmc->ssd_reads++;
992 dmc->disk_writes++;
993#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,27)
994 kcopyd_copy(dmc->kcp_client, &job->cache, 1, &job->disk, 0,
995 flashcache_kcopyd_callback, job);
996#else
997 dm_kcopyd_copy(dmc->kcp_client, &job->cache, 1, &job->disk, 0,
998 (dm_kcopyd_notify_fn) flashcache_kcopyd_callback,
999 (void *)job);
1000#endif
1001 }
1002}
首先是用new_kcached_job申请一个kcached_job结构体,接下来判断dmc->fast_remove_in_prog,这个是移除flashcache标志,设备都要删除掉了,显然就没必要再下发命令了。再判断job是否为空,else这里才是干的正事。这里job->action = WRITEDISK;是最重要的一句话,就是前面讲的写缓存基本操作,而这个action就可以看作是一个状态机,对应的状态如下:
245/* kcached/pending job states */
246#define READCACHE 1
247#define WRITECACHE 2
248#define READDISK 3
249#define WRITEDISK 4
250#define READFILL 5 /* Read Cache Miss Fill */
251#define INVALIDATE 6
252#define WRITEDISK_SYNC 7
这里设置的是WRITEDISK,就是写磁盘,那是从哪里写呢?是从写缓存写的,写缓存的数据又是在哪里呢?我们把SSD盘当作写缓存,所以是从SSD盘写到磁盘。那我们是不是要做很多事情,先从SSD读数据然后再往磁盘写呢?是的,但是我们不用做太多的事情,因为linux内核有大名鼎鼎的kcopyd线程,我们只需要把这些烦索的工作交给kcopyd完成就可以了,调用的接口是
int dm_kcopyd_copy(struct dm_kcopyd_client *kc, struct dm_io_region *from,
unsigned int num_dests, struct dm_io_region *dests,
unsigned int flags, dm_kcopyd_notify_fn fn, void *context)
第一个参数是kcopyd_client,这是是flashcache_ctr即flashcache设备创建的构造函数中创建的,即每一个flashcache设备都对应一个kcopyd_client,那么为什么要创建这个结构体呢?可以简单地理解为使用kcopyd服务的一个句柄。第二参数是数据源,第三个为目的数量,第四个参数为要写的目标,第五个参数为额外标识,这里都设置为0,第六个参数fn是回调函数,设置了回调函数则此函数为异步,不阻塞,如果fn设置为NULL,则会同步等待。最后一个参数context是用于回调函数使用的参数,这里传入的正是我们现在最关心的job。
我们已经把kcached_job派发出去了,接着来看是kcached_job是什么时候回来的,回来又做了什么事情,最后是怎么销毁的?
在dm_kcopyd_copy中设置的回调函数是flashcache_kcopyd_callback。
901static void
902flashcache_kcopyd_callback(int read_err, unsigned int write_err, void *context)
903{
904 struct kcached_job *job = (struct kcached_job *)context;
905 struct cache_c *dmc = job->dmc;
906 int index = job->index;
907 unsigned long flags;
908
909 VERIFY(!in_interrupt());
910 DPRINTK("kcopyd_callback: Index %d", index);
911 VERIFY(job->bio == NULL);
912 spin_lock_irqsave(&dmc->cache_spin_lock, flags);
913 VERIFY(dmc->cache[index].cache_state & (DISKWRITEINPROG | VALID | DIRTY));
914 if (unlikely(sysctl_flashcache_error_inject & KCOPYD_CALLBACK_ERROR)) {
915 read_err = -EIO;
916 sysctl_flashcache_error_inject &= ~KCOPYD_CALLBACK_ERROR;
917 }
918 if (likely(read_err == 0 && write_err == 0)) {
919 spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
920 flashcache_md_write(job);
921 } else {
922 /* Disk write failed. We can not purge this block from flash */
923 DMERR("flashcache: Disk writeback failed ! read error %d write error %d block %lu",
924 -read_err, -write_err, job->disk.sector);
925 VERIFY(dmc->cache_sets[index / dmc->assoc].clean_inprog > 0);
926 VERIFY(dmc->clean_inprog > 0);
927 dmc->cache_sets[index / dmc->assoc].clean_inprog--;
928 dmc->clean_inprog--;
929 spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
930 /* Set the error in the job and let do_pending() handle the error */
931 if (read_err) {
932 dmc->ssd_read_errors++;
933 job->error = read_err;
934 } else {
935 dmc->disk_write_errors++;
936 job->error = write_err;
937 }
938 flashcache_do_pending(job);
939 flashcache_clean_set(dmc, index / dmc->assoc); /* Kick off more cleanings */
940 dmc->cleanings++;
941 }
942}
到这里就表明写缓存的数据写到磁盘的过程已经完成了。首先检查结果是否成功了,如果都成功的话就调用flashcache_md_write。
860
861/*
862 * Kick off a cache metadata update (called from workqueue).
863 * Cache metadata update IOs to a given metadata sector are serialized using the
864 * nr_in_prog bit in the md sector bufhead.
865 * If a metadata IO is already in progress, we queue up incoming metadata updates
866 * on the pending_jobs list of the md sector bufhead. When kicking off an IO, we
867 * cluster all these pending updates and do all of them as 1 flash write (that
868 * logic is in md_write_kickoff), where it switches out the entire pending_jobs
869 * list and does all of those updates.
870 */
871void
872flashcache_md_write(struct kcached_job *job)
873{
874 struct cache_c *dmc = job->dmc;
875 struct cache_md_sector_head *md_sector_head;
876 unsigned long flags;
877
878 VERIFY(!in_interrupt());
879 VERIFY(job->action == WRITEDISK || job->action == WRITECACHE ||
880 job->action == WRITEDISK_SYNC);
881 md_sector_head = &dmc->md_sectors_buf[INDEX_TO_MD_SECTOR(job->index)];
882 spin_lock_irqsave(&dmc->cache_spin_lock, flags);
883 /* If a write is in progress for this metadata sector, queue this update up */
884 if (md_sector_head->nr_in_prog != 0) {
885 struct kcached_job **nodepp;
886
887 /* A MD update is already in progress, queue this one up for later */
888 nodepp = &md_sector_head->pending_jobs;
889 while (*nodepp != NULL)
890 nodepp = &((*nodepp)->next);
891 job->next = NULL;
892 *nodepp = job;
893 spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
894 } else {
895 md_sector_head->nr_in_prog = 1;
896 spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
897 flashcache_md_write_kickoff(job);
898 }
899}
如果函数有注释还是仔细看一下吧,据个人观察,写linux内核的哥们都是惜字如金,如果他愿意写注释,那看注释绝对比看代码更重要,更有意义,如果有文档的话,那文档就是重中之重。看到这里有注释,真是欣喜万分,基本上看了注释不用看代码都行,但对于我这样的小菜鸟来说,有时还不能完全领会大侠的神意,就会继续读一下代码。
861/*
862 * Kick off a cache metadata update (called from workqueue).
863 * Cache metadata update IOs to a given metadata sector are serialized using the
864 * nr_in_prog bit in the md sector bufhead.
865 * If a metadata IO is already in progress, we queue up incoming metadata updates
866 * on the pending_jobs list of the md sector bufhead. When kicking off an IO, we
867 * cluster all these pending updates and do all of them as 1 flash write (that
868 * logic is in md_write_kickoff), where it switches out the entire pending_jobs
869 * list and does all of those updates.
870 */
派发cache metadata更新(从workqueue调用=》因为这里是从kcopyd回调回来的,所以这里友情提示一下,在内核要十分关心调用的上下文,是看内核代码的必修课,有时也是解决疑难问题的基础)。cache metadata的更新是由结构cache_md_sector_head中nr_in_prog字段来控制更新次序的(就是说更新cache metadata是按次序的,如果前面的更新未完成,后面的更新就排队等候)。排队等候的kcached_job就挂在cache_md_sector_head的pending_jobs上。在前面的更新操作回来时,就一次性把pending_jobs上的所有更新操作一次性派发。(因为所有更新就是对应一个sector中flashcache管理结构的)。
这一段看不明白也没关系,因为这里还没有讲到flashcache的数据组织。但必须明白,我们在flashcache_dirty_writeback中把脏数据从写缓存SSD刷到磁盘,这里要做的事情就是把这个脏数据的的metadata从内存刷到SSD,这样就保证了在异常掉电的情况下元数据可以从SSD中找回。
到这里kcached_job还没有销毁,我们继续跟踪下去 flashcache_md_write=>flashcache_md_write_kickoff。
660static void
661flashcache_md_write_kickoff(struct kcached_job *job)
662{
663 struct cache_c *dmc = job->dmc;
664 struct flash_cacheblock *md_sector;
665 int md_sector_ix;
666#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,27)
667 struct io_region where;
668#else
669 struct dm_io_region where;
670#endif
671 int i;
672 struct cache_md_sector_head *md_sector_head;
673 struct kcached_job *orig_job = job;
674 unsigned long flags;
675
676 if (flashcache_alloc_md_sector(job)) {
677 DMERR("flashcache: %d: Cache metadata write failed, cannot alloc page ! block %lu",
678 job->action, job->disk.sector);
679 flashcache_md_write_callback(-EIO, job);
680 return;
681 }
682 spin_lock_irqsave(&dmc->cache_spin_lock, flags);
683 /*
684 * Transfer whatever is on the pending queue to the md_io_inprog queue.
685 */
686 md_sector_head = &dmc->md_sectors_buf[INDEX_TO_MD_SECTOR(job->index)];
687 md_sector_head->md_io_inprog = md_sector_head->pending_jobs;
688 md_sector_head->pending_jobs = NULL;
689 md_sector = job->md_sector;
690 md_sector_ix = INDEX_TO_MD_SECTOR(job->index) * MD_BLOCKS_PER_SECTOR;
691 /* First copy out the entire sector */
692 for (i = 0 ;
693 i < MD_BLOCKS_PER_SECTOR && md_sector_ix < dmc->size ;
694 i++, md_sector_ix++) {
695 md_sector[i].dbn = dmc->cache[md_sector_ix].dbn;
696#ifdef FLASHCACHE_DO_CHECKSUMS
697 md_sector[i].checksum = dmc->cache[md_sector_ix].checksum;
698#endif
699 md_sector[i].cache_state =
700 dmc->cache[md_sector_ix].cache_state & (VALID | INVALID | DIRTY);
701 }
702 /* Then set/clear the DIRTY bit for the "current" index */
703 if (job->action == WRITECACHE) {
704 /* DIRTY the cache block */
705 md_sector[INDEX_TO_MD_SECTOR_OFFSET(job->index)].cache_state =
706 (VALID | DIRTY);
707 } else { /* job->action == WRITEDISK* */
708 /* un-DIRTY the cache block */
709 md_sector[INDEX_TO_MD_SECTOR_OFFSET(job->index)].cache_state = VALID;
710 }
711
712 for (job = md_sector_head->md_io_inprog ;
713 job != NULL ;
714 job = job->next) {
715 if (job->action == WRITECACHE) {
716 /* DIRTY the cache block */
717 md_sector[INDEX_TO_MD_SECTOR_OFFSET(job->index)].cache_state =
718 (VALID | DIRTY);
719 } else { /* job->action == WRITEDISK* */
720 /* un-DIRTY the cache block */
721 md_sector[INDEX_TO_MD_SECTOR_OFFSET(job->index)].cache_state = VALID;
722 }
723 }
724 spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
725 where.bdev = dmc->cache_dev->bdev;
726 where.count = 1;
727 where.sector = 1 + INDEX_TO_MD_SECTOR(orig_job->index);
728 dmc->ssd_writes++;
729 dm_io_async_bvec(1, &where, WRITE,
730 &orig_job->md_io_bvec,
731 flashcache_md_write_callback, orig_job);
732 flashcache_unplug_device(dmc->cache_dev->bdev);
733}
这里cacheblock 信息保存到job->md_io_bvec的page页中,再调用dm_io_async_bvec将数据写到SSD盘中。我们来看一下该函数原型:
static int dm_io_async_bvec(unsigned int num_regions,
struct dm_io_region *where, int rw,
struct bio_vec *bvec, io_notify_fn fn,
void *context)
该函数与之前的dm_kcopyd_copy类似,我们最关心的是参数where,因为这是人生最重要的一课,你是谁?你要到哪里去?
where的bdev域就是目标设备,而sector域就是起始地址,count表示要写的扇区数。这个函数就是把dmc->cache的管理结构打包到job->md_io_bvec中,然后写到SSD对应位置上。
再接下来看写SSD完成调用flashcache_md_write_callback:
621void
622flashcache_md_write_callback(unsigned long error, void *context)
623{
624 struct kcached_job *job = (struct kcached_job *)context;
625
626 job->error = error;
627 push_md_complete(job);
628 schedule_work(&_kcached_wq);
629}
该函数只是简单地设置job的返回值,然后放到_md_complete_jobs这个链表里,然后通知workqueue处理。为什么不直接在这个函数里处理,而要放到后面处理呢?这就像每个公司都有个漂亮的前台秘书,这个物流公司送来了大箱的物料,美女秘书当然不会自己搬,随便撒个娇一大群工科男都抢着干活。这里函数是写完成的回调函数,是在软中断中调用的,软中断跟美女秘书一样,干不了重活,只能简单地签收一下,剩下的活就由workqueue来完成了。
要继续我们的跟踪,那就得问workqueue是从哪里来的,workqueue做了什么,或者说对job做了什么?
flashcache_init=>INIT_WORK(&_kcached_wq, do_work);=>process_jobs(&_md_complete_jobs, flashcache_md_write_done);
先看process_jobs
284static void
285process_jobs(struct list_head *jobs,
286 void (*fn) (struct kcached_job *))
287{
288 struct kcached_job *job;
289
290 while ((job = pop(jobs)))
291 (void)fn(job);
292}
就是从队列中把刚才美女秘书签收的job取出来,然后调用fn,fn就是这里注册的flashcache_md_write_done。
从函数名有个蛋(done),就好像每天下午的5点半,一天的忙碌立马可以收工了,但是悲剧的LZ现在每个月都要加班72个小时,这样想想大家有没有从LZ的不幸中找到自己的幸福?
735void
736flashcache_md_write_done(struct kcached_job *job)
737{
738 struct cache_c *dmc = job->dmc;
739 struct cache_md_sector_head *md_sector_head;
740 int index;
741 unsigned long flags;
742 struct kcached_job *job_list;
743 int error = job->error;
744 struct kcached_job *next;
745 struct cacheblock *cacheblk;
746
747 VERIFY(!in_interrupt());
748 VERIFY(job->action == WRITEDISK || job->action == WRITECACHE ||
749 job->action == WRITEDISK_SYNC);
750 flashcache_free_md_sector(job);
751 job->md_sector = NULL;
752 md_sector_head = &dmc->md_sectors_buf[INDEX_TO_MD_SECTOR(job->index)];
753 job_list = job;
754 job->next = md_sector_head->md_io_inprog;
755 md_sector_head->md_io_inprog = NULL;
756 for (job = job_list ; job != NULL ; job = next) {
757 next = job->next;
758 job->error = error;
759 index = job->index;
760 cacheblk = &dmc->cache[index];
761 spin_lock_irqsave(&dmc->cache_spin_lock, flags);
762 if (job->action == WRITECACHE) {
763 if (unlikely(sysctl_flashcache_error_inject & WRITECACHE_MD_ERROR)) {
764 job->error = -EIO;
765 sysctl_flashcache_error_inject &= ~WRITECACHE_MD_ERROR;
766 }
767 if (likely(job->error == 0)) {
768 if ((cacheblk->cache_state & DIRTY) == 0) {
769 dmc->cache_sets[index / dmc->assoc].nr_dirty++;
770 dmc->nr_dirty++;
771 }
772 dmc->md_write_dirty++;
773 cacheblk->cache_state |= DIRTY;
774 } else
775 dmc->ssd_write_errors++;
776 flashcache_bio_endio(job->bio, job->error);
777 if (job->error || cacheblk->head) {
778 if (job->error) {
779 DMERR("flashcache: WRITE: Cache metadata write failed ! error %d block %lu",
780 -job->error, cacheblk->dbn);
781 }
782 spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
783 flashcache_do_pending(job);
784 } else {
785 cacheblk->cache_state &= ~BLOCK_IO_INPROG;
786 spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
787 flashcache_free_cache_job(job);
788 if (atomic_dec_and_test(&dmc->nr_jobs))
789 wake_up(&dmc->destroyq);
790 }
791 } else {
792 int action = job->action;
793
794 if (unlikely(sysctl_flashcache_error_inject & WRITEDISK_MD_ERROR)) {
795 job->error = -EIO;
796 sysctl_flashcache_error_inject &= ~WRITEDISK_MD_ERROR;
797 }
798 /*
799 * If we have an error on a WRITEDISK*, no choice but to preserve the
800 * dirty block in cache. Fail any IOs for this block that occurred while
801 * the block was being cleaned.
802 */
803 if (likely(job->error == 0)) {
804 dmc->md_write_clean++;
805 cacheblk->cache_state &= ~DIRTY;
806 VERIFY(dmc->cache_sets[index / dmc->assoc].nr_dirty > 0);
807 VERIFY(dmc->nr_dirty > 0);
808 dmc->cache_sets[index / dmc->assoc].nr_dirty--;
809 dmc->nr_dirty--;
810 } else
811 dmc->ssd_write_errors++;
812 VERIFY(dmc->cache_sets[index / dmc->assoc].clean_inprog > 0);
813 VERIFY(dmc->clean_inprog > 0);
814 dmc->cache_sets[index / dmc->assoc].clean_inprog--;
815 dmc->clean_inprog--;
816 if (job->error || cacheblk->head) {
817 if (job->error) {
818 DMERR("flashcache: CLEAN: Cache metadata write failed ! error %d block %lu",
819 -job->error, cacheblk->dbn);
820 }
821 spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
822 flashcache_do_pending(job);
823 /* Kick off more cleanings */
824 if (action == WRITEDISK)
825 flashcache_clean_set(dmc, index / dmc->assoc);
826 else
827 flashcache_sync_blocks(dmc);
828 } else {
829 cacheblk->cache_state &= ~BLOCK_IO_INPROG;
830 spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
831 flashcache_free_cache_job(job);
832 if (atomic_dec_and_test(&dmc->nr_jobs))
833 wake_up(&dmc->destroyq);
834 /* Kick off more cleanings */
835 if (action == WRITEDISK)
836 flashcache_clean_set(dmc, index / dmc->assoc);
837 else
838 flashcache_sync_blocks(dmc);
839 }
840 dmc->cleanings++;
841 if (action == WRITEDISK_SYNC)
842 flashcache_update_sync_progress(dmc);
843 }
844 }
845 spin_lock_irqsave(&dmc->cache_spin_lock, flags);
846 if (md_sector_head->pending_jobs != NULL) {
847 /* peel off the first job from the pending queue and kick that off */
848 job = md_sector_head->pending_jobs;
849 md_sector_head->pending_jobs = job->next;
850 job->next = NULL;
851 spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
852 VERIFY(job->action == WRITEDISK || job->action == WRITECACHE ||
853 job->action == WRITEDISK_SYNC);
854 flashcache_md_write_kickoff(job);
855 } else {
856 md_sector_head->nr_in_prog = 0;
857 spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
858 }
859}
860
首先是flashcache_free_md_sector,这个函数只是简单地把刚才分配的记录cacheblock 的page页释放。哪个刚才啊?就是flashcache_md_write_kickoff中flashcache_alloc_md_sector申请的page页。所以看这个函数时要回头再去看看flashcache_md_write_kickoff,所以前面提到了上下文,那么在这里kickoff是上文,done就是下文,上文种什么因,下文就得到什么果。上文申请了page页,下文就要释放page页;上文把dmc->md_sectors_buf[]中struct kcached_job *md_io_inprog对应的kcached_job都已经下发了,下文这里才有一个for循环。细心的你可能会问,为什么这里的kcached_job可以一起下发?那首先要来了解一下这里的kcached_job是干什么的。是结构体上的:
/*
* We have one of these for *every* cache metadata sector, to keep track
* of metadata ios in progress for blocks covered in this sector. Only
* one metadata IO per sector can be in progress at any given point in
* time
*/
struct cache_md_sector_head {
u_int32_t nr_in_prog;
struct kcached_job *pending_jobs, *md_io_inprog;
};
按规矩先看注释,每一个cache metadata扇区都有对应一个cache_md_sector_head结构,用于同步进程(内存中)cacheblock metadata到cache metadata扇区。同时只能有一个IO在同步,对应的是cache_md_sector_head->nr_in_prog。回答上面的问题,就是这些kcached_job是对应同一个扇区内的不同metadata的写,所以可以合并。这个扇区指的是SSD盘上存放flash_block结构的。
再回到flashcache_md_write_done函数中,在for循环中job->action为WRITEDISK,所以直接来到for循环中else,迎面而来的又是一行注释,在WRITEDISK*发生错误时,只有保持cacheblock的DIRTY标志。接下来判断有错误或者cacheblock上还有pending_job,那么继续下发IO,否则的话清除cacheblock的处理标志,这里我们终于见到了kcached_job完成了他的使命,调用flashcache_free_cache_job将该结构返回给内存池。
似乎到这里我们就可以像童话里讲的“从此他们过上了幸福的生活”来结束kcached_job的介绍。然而回归资源池也意味着kcached_job的再生,接着判断action==WRITEDISK,调用flashcache_clean_set,将超过脏水平线的cache块刷回到磁盘。就是说在每次写磁盘返回的时候这个workqueue都会检查一下脏水平线,如果超过就继续往下刷,这就又回到了本文最开始的flashcache_dirty_writeback函数,真是因果联系,环环相扣,kcached_job的再生不是为了自己,而是为cacheblock的再生,所以说人不能只为自己活着,每个人只是万千轮回里的一个元素,都是为了成全其他元素而进入六道轮回。
下面一篇会从flashcache的数据结构和存储设计来分析。