大意不再赘述。
思路:有几个表达式我们可以假设c的值为0或者1,然后去推相互之间有矛盾的点,连边时,我们将点拆为2个,一个表示0,一个表示1,Tarjan时就需要循环到2*n啦,有些表达式重复了,比如异或所有的重复了,所以不需要再增加边。
a AND b == 1 (a,b同时为1) a->b, b->a, ~a-->a, ~b-->b;
a AND b == 0 (a,b不同时为1) a-->~b, b-->~a;
a OR b == 1 (a,b不同时为0) ~a-->b, ~b-->a;
a OR b == 0 (a,b同时为0) ~a->~b, ~b->~a, a-->~a, b-->~b;
a XOR b == 1 (a,b不相同为1) a->~b, b->~a, ~a->b, ~b->a;
a XOR b == 0 (a,b相同为0) a->b, b->a, ~a->~b, ~b->~a;
#include <iostream> #include <cstdio> #include <algorithm> #include <cstring> #include <string> #include <cstdlib> using namespace std; const int MAXN = 2020; const int MAXM = 1000100; struct Edge { int u, v, next; }edge[MAXM]; int first[MAXN], stack[MAXN], ins[MAXN], low[MAXN], dfn[MAXN]; int belong[MAXM]; int ind[MAXN], outd[MAXN]; int cnt; int n, m; int scnt, top, tot; void init() { cnt = 0; scnt = top = tot = 0; memset(first, -1, sizeof(first)); memset(ins, 0, sizeof(ins)); memset(dfn, 0, sizeof(dfn)); } void read_graph(int u, int v) { edge[cnt].v = v; edge[cnt].next = first[u], first[u] = cnt++; } void dfs(int u) { int v; low[u] = dfn[u] = ++tot; stack[top++] = u; ins[u] = 1; for(int e = first[u]; e != -1; e = edge[e].next) { v = edge[e].v; if(!dfn[v]) { dfs(v); low[u] = min(low[u], low[v]); } else if(ins[v]) { low[u] = min(low[u], dfn[v]); } } if(low[u] == dfn[u]) { scnt++; do { v = stack[--top]; belong[v] = scnt; ins[v] = 0; }while(u != v); } } void Tarjan() { for(int v = 0; v < 2*n; v++) if(!dfn[v]) dfs(v); } void read_case() { init(); while(m--) { int x, y, c; char str[5]; scanf("%d%d%d%s", &x, &y, &c, str); if(str[0] == 'A') //拆点为2*x, 2*x+1,前者表示~a,后者表示a { if(c) { read_graph(2*x, 2*x+1); read_graph(2*y, 2*y+1); } else { read_graph(2*x+1, 2*y); read_graph(2*y+1, 2*x); } } else if(str[0] == 'O') { if(c) { read_graph(2*x, 2*y+1); read_graph(2*y, 2*x+1); } else { read_graph(2*x+1, 2*x); read_graph(2*y+1, 2*y); } } } } void solve() { read_case(); Tarjan(); for(int i = 0; i < 2*n; i += 2) { if(belong[i] == belong[i+1]) { printf("NO\n"); return ; } } printf("YES\n"); } int main() { while(~scanf("%d%d", &n, &m)) { solve(); } return 0; }