大意:给定一个n边形城堡,在它的外部构造一个总长度尽量小的围墙,使得围墙的任何一部分离城堡的距离都不小于L。
思路:通过观察可以发现先求凸包,求得凸包之后,绕凸包先把原有的线段平移,即是凸包的周长,但这还不够,弧的长度没有加,其余的长度可以发现是以给定的L圆的周长,绕着凸包走360度加起来的弧长度就是整个圆的周长。
#include <iostream> #include <cstdlib> #include <cstdio> #include <string> #include <cstring> #include <cmath> #include <vector> #include <queue> #include <stack> #include <algorithm> using namespace std; const double eps = 1e-8; const double PI = acos(-1.0); struct Point { double x, y; Point(double x = 0, double y = 0) : x(x), y(y) { } bool operator < (const Point& a) const { if(a.x != x) return x < a.x; return y < a.y; } }; typedef Point Vector; struct Line { Point P; Vector v; double ang; Line() {} Line(Point P, Vector v) : P(P), v(v) { ang = atan2(v.y, v.x); } bool operator < (const Line& L) const { return ang < L.ang; } }; Vector operator + (Vector A, Vector B) { return Vector(A.x+B.x, A.y+B.y); } Vector operator - (Point A, Point B) { return Vector(A.x-B.x, A.y-B.y); } Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); } Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); } int dcmp(double x) { if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } bool operator == (const Point& a, const Point &b) { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; } double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; } double Length(Vector A) { return sqrt(Dot(A, A)); } double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); } double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; } double Area2(Point A, Point B, Point C) { return fabs(Cross(B-A, C-A)) / 2; } Vector Rotate(Vector A, double rad) { return Vector(A.x*cos(rad)-A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad)); } Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) { Vector u = P-Q; double t = Cross(w, u) / Cross(v, w); return P+v*t; } bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) { double c1 = Cross(a2-a1, b1-a1), c2 = Cross(a2-a1, b2-a1); double c3 = Cross(b2-b1, a1-b1), c4 = Cross(b2-b1, a2-b1); return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0; } bool OnSegment(Point p, Point a1, Point a2) { return dcmp(Cross(a1-p, a2-p)) == 0 && dcmp(Dot(a1-p, a2-p)) < 0; } double PolygonArea(vector<Point> p) { int n = p.size(); double area = 0; for(int i = 1; i < n-1; i++) area += Cross(p[i]-p[0], p[i+1]-p[0]); return area/2; } double PointDistanceToLine(Point P, Point A, Point B) { Vector v1 = B-A, v2 = P-A; return fabs(Cross(v1, v2)) / Length(v1); } double PointDistanceToSegment(Point P, Point A, Point B) { if(A == B) return Length(P-A); Vector v1 = B-A, v2 = P-A, v3 = P-B; if(dcmp(Dot(v1, v2) < 0)) return Length(v2); else if(dcmp(Dot(v1, v3) > 0)) return Length(v3); else return fabs(Cross(v1, v2)) / Length(v1); } int isPointInPolygon(Point p, Point *poly, int n) { int wn = 0; for(int i = 0; i < n; i++) { const Point& p1 = poly[i], p2 = poly[(i+1)%n]; if(p == p1 || p == p2 || OnSegment(p, p1, p2)) return -1; int k = dcmp(Cross(p2-p1, p-p1)); int d1 = dcmp(p1.y - p.y); int d2 = dcmp(p2.y - p.y); if(k > 0 && d1 <= 0 && d2 > 0) wn++; if(k < 0 && d2 <= 0 && d1 > 0) wn--; } if(wn != 0) return 1; return 0; } int ConvexHull(Point *p, int n, Point *ch) //凸包 { sort(p, p+n); n = unique(p, p+n) - p; //去重 int m = 0; for(int i = 0; i < n; i++) { while(m > 1 && Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2]) <= 0) m--; ch[m++] = p[i]; } int k = m; for(int i = n-2; i >= 0; i--) { while(m > k && Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2]) <= 0) m--; ch[m++] = p[i]; } if(n > 1) m--; return m; } Vector Normal(Vector A) { double L = Length(A); return Vector (-A.y/L, A.x/L); } double Dist2(Point p1, Point p2) { return (p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y); } // 返回点集直径的平方 double RotatingCalipers(Point *P, int n) //旋转卡壳 { if(n == 1) return 0; if(n == 2) return Dist2(P[0], P[1]); P[n] = P[0]; //避免取模 double ans = 0; for(int u = 0, v = 1; u < n; u++) { //一条直线贴住边p[u]-p[u+1] for(;;) { // 当Area(p[u], p[u+1], p[v+1]) <= Area(p[u], p[u+1], p[v])时停止旋转 // 即Cross(p[u+1]-p[u], p[v+1]-p[u]) - Cross(p[u+1]-p[u], p[v]-p[u]) <= 0 // 根据Cross(A,B) - Cross(A,C) = Cross(A,B-C) // 化简得Cross(p[u+1]-p[u], p[v+1]-p[v]) <= 0 double diff = Cross(P[u+1]-P[u], P[v+1]-P[v]); if(diff <= 0) { ans = max(ans, Dist2(P[u], P[v])); // u和v是对踵点 if(diff == 0) ans = max(ans, Dist2(P[u], P[v+1])); // diff == 0时u和v+1也是对踵点 break; //即边平行 } v = (v + 1) % n; } } return ans; } bool OnLeft(Line L, Point p) { return Cross(L.v, p-L.P) > 0; } Point GetLineIntersection2(const Line &a, const Line &b) { Vector u = a.P-b.P; double t = Cross(b.v, u) / Cross(a.v, b.v); return a.P+a.v*t; } int HalfPlaneIntersection(Line* L, int n, Point* poly) { sort(L, L+n); int first, last; Point *p = new Point[n]; Line* q = new Line[n]; q[first=last=0] = L[0]; for(int i = 1; i < n; i++) { while(first < last && !OnLeft(L[i], p[last-1])) last--; while(first < last && !OnLeft(L[i], p[first])) first++; q[++last] = L[i]; if(fabs(Cross(q[last].v, q[last-1].v)) < eps) { last--; if(OnLeft(q[last], L[i].P)) q[last] = L[i]; } if(first < last) p[last-1] = GetLineIntersection2(q[last-1], q[last]); } while(first < last && !OnLeft(q[first], p[last-1])) last--; if(last - first <= 1) return 0; p[last] = GetLineIntersection2(q[last], q[first]); int m = 0; for(int i = first; i <= last; i++) poly[m++] = p[i]; return m; } vector<Point> CutPolygon(const vector<Point> &poly, Point A, Point B) //可返回单点或者线段 { vector<Point> newpoly; int n = poly.size(); for(int i = 0; i < n; i++) { Point C = poly[i], D = poly[(i+1)%n]; if(dcmp(Cross(B-A, C-A)) >= 0) newpoly.push_back(C); if(dcmp(Cross(B-A, C-D)) != 0) { Point ip = GetLineIntersection(A, B-A, C, D-C); if(OnSegment(ip, C, D)) newpoly.push_back(ip); } } return newpoly; } Point read_point() { Point A; scanf("%lf%lf", &A.x, &A.y); return A; } const int maxn = 10010; Point P[maxn], Q[maxn]; Vector v1[maxn], v2[maxn]; int n, m, L; double sqr(double x) { return x*x; } double Dist(Point A, Point B) { return sqrt(sqr(A.x-B.x) + sqr(A.y-B.y)); } void read_case() { scanf("%d%d", &n, &L); for(int i = 0; i < n; i++) P[i] = read_point(); m = ConvexHull(P, n, Q); } void init() { memset(P, 0, sizeof(P)); memset(Q, 0, sizeof(Q)); } void solve() { init(); read_case(); double ans = 0; for(int i = 0; i < m; i++) { ans += Dist(Q[(i+1)%m], Q[i]); } ans += 2.0*PI*L; printf("%.0lf\n", ans); } int main() { int T, times = 0; scanf("%d", &T); while(T--) { if(times) printf("\n"); solve(); times++; } return 0; }