hdu1043Eight(dbfs)

Eight

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 9152    Accepted Submission(s): 2466
Special Judge


Problem Description
The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as: 
 1  2  3  4
 5  6  7  8
 9 10 11 12
13 14 15  x

where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle: 
 1  2  3  4     1  2  3  4     1  2  3  4     1  2  3  4
 5  6  7  8     5  6  7  8     5  6  7  8     5  6  7  8
 9  x 10 12     9 10  x 12     9 10 11 12     9 10 11 12
13 14 11 15    13 14 11 15    13 14  x 15    13 14 15  x
            r->            d->            r->

The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively. 

Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and 
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course). 

In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three 
arrangement.
 

Input
You will receive, several descriptions of configuration of the 8 puzzle. One description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle 

1 2 3 
x 4 6 
7 5 8 

is described by this list: 

1 2 3 x 4 6 7 5 8
 

Output
You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line. Do not print a blank line between cases.
 

Sample Input
   
   
   
   
2 3 4 1 5 x 7 6 8
 

Sample Output
   
   
   
   
ullddrurdllurdruldr
 

Source
South Central USA 1998 (Sepcial Judge Module By JGShining)
 

Recommend
JGShining

题目大意:经典题,不解释。

题目分析:杭电的测试数据比poj强,poj乱搞也能过,hdu卡单向bfs,双向比较保险,高级点的话就A*吧。

传说此题不做人生不完整。。。

详情请见代码:

#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 1000005;//poj4048K	0MS...
long fac[] = {1,1,2,6,24,120,720,5040,40320,362880};
int flag[2][363000];//记录前驱后继
char op[2][363000];//记录路径
bool ok;
struct node
{
    int val,step,pos;
    char state[9];
}ss,now;
int start,end;
struct que
{
    struct node t[N];
    int head,tail;
    void init()
    {
        head = tail = 0;
    }
    bool empty()
    {
        return head == tail;
    }
    void push(struct node a)
    {
        t[tail] = a;
        tail ++;
        if(tail >= N)
            tail -= N;
    }
    struct node top()
    {
        return t[head];
    }
    void pop()
    {
        head ++;
        if(head >= N)
            head -= N;
    }
}q[2];

int contor()
{
    int i,j;
    int tmp,num;
    num = 0;
    for(i = 0;i < 9;i ++)
    {
        tmp = 0;
        for(j = i + 1;j < 9;j ++)
            if(ss.state[j] < ss.state[i])
                tmp ++;
        num += fac[9 - i - 1] * tmp;
    }
    return num;
}

void output(int cur)
{
    if(cur == start)
        return;
    output(flag[0][cur]);
    putchar(op[0][cur]);
}

void print()
{
    int i,root;
    output(ss.val);//从起点到相遇点的路径输出
    root = ss.val;
    do
    {
        switch(op[1][root])
        {
            case 'u':putchar('d');break;
            case 'd':putchar('u');break;
            case 'l':putchar('r');break;
            case 'r':putchar('l');break;
        }
        root = flag[1][root];
    }while(root != end);//从相遇点到终点的路径输出,注意反向
    putchar(10);
}

void dbfs()
{
    int i,j;
    q[0].init();
    q[1].init();
    ss.step = 0;
    q[0].push(ss);
    ss.val = 0;
    for(i = 0;i < 9;i ++)
        ss.state[i] = '1' + i;
    ss.pos = 8;
    q[1].push(ss);
    flag[1][end] = end;
    flag[0][start] = start;
    j = 0;
    while(!q[0].empty() && !q[1].empty())
    {
        for(i = 0;i < 2;i ++)
        {
            while(!q[i].empty() && q[i].top().step == j)
            {
                now = q[i].top();
                //printf("%d %d %d\n",i,now.step,now.val);
                //system("pause");
                q[i].pop();
                if(now.pos > 2)//up
                {
                    ss = now;
                    ss.step ++;
                    ss.state[ss.pos] ^= ss.state[ss.pos - 3] ^= ss.state[ss.pos] ^= ss.state[ss.pos - 3];
                    ss.pos -= 3;
                    ss.val = contor();
                    if(flag[i][ss.val] == -1)
                    {
                        flag[i][ss.val] = now.val;
                        op[i][ss.val] = 'u';
                        if(flag[1 - i][ss.val] != -1)
                        {
                            print();
                            return;
                        }
                        q[i].push(ss);
                    }
                }
                if(now.pos < 6)//down
                {
                    ss = now;
                    ss.step ++;
                    ss.state[ss.pos] ^= ss.state[ss.pos + 3] ^= ss.state[ss.pos] ^= ss.state[ss.pos + 3];
                    ss.pos += 3;
                    ss.val = contor();
                    if(flag[i][ss.val] == -1)
                    {
                        flag[i][ss.val] = now.val;
                        op[i][ss.val] = 'd';
                        if(flag[1 - i][ss.val] != -1)
                        {
                            print();
                            return;
                        }
                        q[i].push(ss);
                    }
                }
                if(now.pos % 3)//left
                {
                    ss = now;
                    ss.step ++;
                    ss.state[ss.pos] ^= ss.state[ss.pos - 1] ^= ss.state[ss.pos] ^= ss.state[ss.pos - 1];
                    ss.pos --;
                    ss.val = contor();
                    if(flag[i][ss.val] == -1)
                    {
                        flag[i][ss.val] = now.val;
                        op[i][ss.val] = 'l';
                        if(flag[1 - i][ss.val] != -1)
                        {
                            print();
                            return;
                        }
                        q[i].push(ss);
                    }
                }
                if(now.pos % 3 != 2)//right
                {
                    ss = now;
                    ss.step ++;
                    ss.state[ss.pos] ^= ss.state[ss.pos + 1] ^= ss.state[ss.pos] ^= ss.state[ss.pos + 1];
                    ss.pos ++;
                    ss.val = contor();
                    if(flag[i][ss.val] == -1)
                    {
                        flag[i][ss.val] = now.val;
                        op[i][ss.val] = 'r';
                        if(flag[1 - i][ss.val] != -1)
                        {
                            print();
                            return;
                        }
                        q[i].push(ss);
                    }
                }
            }
        }
        j ++;
    }
    //printf("out loop\n");
    printf("unsolvable\n");
}

int main()
{
    char s[3];
    while(scanf("%s",s) != EOF)
    {
        ss.state[0] = s[0];
        if(ss.state[0] == 'x')
        {
            ss.state[0] = '9';
            ss.pos = 0;
        }
        for(int i = 1;i < 9;i ++)
        {
            scanf("%s",s);
            if(s[0] == 'x')
            {
                s[0] = '9';
                ss.pos = i;
            }
            ss.state[i] = s[0];
        }
        ss.val = contor();
        start = ss.val;
        end = 0;
        int so = 0;
        for(int ii = 0;ii < 9;ii ++)//逆序数偶数才有解,不包括空格!!
        {
            if(ss.state[ii] == '9')
                continue;
            for(int jj = 0;jj < ii;jj ++)
            {
                if(ss.state[jj] == '9')
                    continue;
                if(ss.state[jj] < ss.state[ii])
                    so ++;
            }
        }
        //printf("%d\n",so);
        if(so % 2)
        {
            printf("unsolvable\n");
            continue;
        }
        memset(flag,-1,sizeof(flag));
        dbfs();
    }
    return 0;
}
//hdu421MS	4092K
//poj4052K	16MS



你可能感兴趣的:(bfs)