linux下的USB HUB驱动

一:前言
继UHCI的驱动之后,我们对USB Control的运作有了一定的了解.在接下来的分析中,我们对USB设备的驱动做一个全面的分析,我们先从HUB的驱动说起.关于HUB,usb2.0 spec上有详细的定义,基于这部份的代码位于linux-2.6.25/drivers/usb/core下,也就是说,这部份代码是位于core下,和具体设备是无关的,因为各厂商的hub都是按照spec的要求来设计的.
二:UHCI驱动中的root hub
记得在分析UHCI驱动的时候,曾详细分析过root hub的初始化操作.为了分析方便,将代码片段列出如下:
usb_add_hcd() à usb_alloc_dev():
struct usb_device *usb_alloc_dev(struct usb_device *parent,
               struct usb_bus *bus, unsigned port1)
{
    ……
    ……
    //usb_device,内嵌有struct device结构,对这个结构进行初始化
    device_initialize(&dev->dev);
    dev->dev.bus = &usb_bus_type;
    dev->dev.type = &usb_device_type;
    ……
    ……
}
一看到前面对dev的赋值,根据我们对设备模型的理解,一旦这个device进行注册,就会发生driver和device的匹配过程了.
不过,现在还不是分析这个过程的时候,我们先来看一下,USB子系统中的两种驱动.
 
三:USB子系统中的两种驱动
linux-2.6.25/drivers/usb/core/driver.c中,我们可以找到两种register driver的方式,分别为usb_register_driver()和usb_register_device_driver().分别来分析一下这两个接口.
 
usb_register_device_driver()接口的代码如下:
int usb_register_device_driver(struct usb_device_driver *new_udriver,
        struct module *owner)
{
    int retval = 0;
 
    if (usb_disabled())
        return -ENODEV;
 
    new_udriver->drvwrap.for_devices = 1;
    new_udriver->drvwrap.driver.name = (char *) new_udriver->name;
    new_udriver->drvwrap.driver.bus = &usb_bus_type;
    new_udriver->drvwrap.driver.probe = usb_probe_device;
    new_udriver->drvwrap.driver.remove = usb_unbind_device;
    new_udriver->drvwrap.driver.owner = owner;
 
    retval = driver_register(&new_udriver->drvwrap.driver);
 
    if (!retval) {
        pr_info("%s: registered new device driver %s\n",
            usbcore_name, new_udriver->name);
        usbfs_update_special();
    } else {
        printk(KERN_ERR "%s: error %d registering device "
            "   driver %s\n",
            usbcore_name, retval, new_udriver->name);
    }
 
    return retval;
}
首先,通过usb_disabled()来判断一下usb是否被禁用,如果被禁用,当然就不必执行下面的流程了,直接退出即可.
从上面的代码,很明显可以看到, struct usb_device_driver 对struct device_driver进行了一次封装,我们注意一下这里的赋值操作:new_udriver->drvwrap.for_devices = 1.等等.这些在后面都是用派上用场的.
 
usb_register_driver()的代码如下:
int usb_register_driver(struct usb_driver *new_driver, struct module *owner,
            const char *mod_name)
{
    int retval = 0;
 
    if (usb_disabled())
        return -ENODEV;
 
    new_driver->drvwrap.for_devices = 0;
    new_driver->drvwrap.driver.name = (char *) new_driver->name;
    new_driver->drvwrap.driver.bus = &usb_bus_type;
    new_driver->drvwrap.driver.probe = usb_probe_interface;
    new_driver->drvwrap.driver.remove = usb_unbind_interface;
    new_driver->drvwrap.driver.owner = owner;
    new_driver->drvwrap.driver.mod_name = mod_name;
    spin_lock_init(&new_driver->dynids.lock);
    INIT_LIST_HEAD(&new_driver->dynids.list);
 
    retval = driver_register(&new_driver->drvwrap.driver);
 
    if (!retval) {
        pr_info("%s: registered new interface driver %s\n",
            usbcore_name, new_driver->name);
        usbfs_update_special();
        usb_create_newid_file(new_driver);
    } else {
        printk(KERN_ERR "%s: error %d registering interface "
            "   driver %s\n",
            usbcore_name, retval, new_driver->name);
    }
 
    return retval;
}
很明显,在这里接口里,将new_driver->drvwrap.for_devices设为了0.而且两个接口的porbe()函数也不一样.
其实,对于usb_register_driver()可以看作是usb设备中的接口驱动,而usb_register_device_driver()是一个单纯的USB设备驱动.
 
四: hub的驱动分析
4.1: usb_bus_type->match()的匹配过程
usb_bus_type->match()用来判断驱动和设备是否匹配,它的代码如下:
static int usb_device_match(struct device *dev, struct device_driver *drv)
{
    /* devices and interfaces are handled separately */
 
    //usb device的情况
    if (is_usb_device(dev)) {
 
        /* interface drivers never match devices */
        if (!is_usb_device_driver(drv))
            return 0;
 
        /* TODO: Add real matching code */
        return 1;
 
    }
    //interface的情况
    else {
        struct usb_interface *intf;
        struct usb_driver *usb_drv;
        const struct usb_device_id *id;
 
        /* device drivers never match interfaces */
        if (is_usb_device_driver(drv))
            return 0;
 
        intf = to_usb_interface(dev);
        usb_drv = to_usb_driver(drv);
 
        id = usb_match_id(intf, usb_drv->id_table);
        if (id)
            return 1;
 
        id = usb_match_dynamic_id(intf, usb_drv);
        if (id)
            return 1;
    }
 
    return 0;
}
这里的match会区分上面所说的两种驱动,即设备的驱动和接口的驱动.
is_usb_device()的代码如下:
static inline int is_usb_device(const struct device *dev)
{
    return dev->type == &usb_device_type;
}
很明显,对于root hub来说,这个判断是肯定会满足的.
static inline int is_usb_device_driver(struct device_driver *drv)
{
    return container_of(drv, struct usbdrv_wrap, driver)->
            for_devices;
}
回忆一下,我们在分析usb_register_device_driver()的时候,不是将new_udriver->drvwrap.for_devices置为了1么?所以对于usb_register_device_driver()注册的驱动来说,这里也是会满足的.
因此,对应root hub的情况,从第一个if就会匹配到usb_register_device_driver()注册的驱动.
对于接口的驱动,我们等遇到的时候再来进行分析.
 
4.2:root hub的驱动入口
既然我们知道,root hub会匹配到usb_bus_type->match()的驱动,那这个驱动到底是什么呢?我们从usb子系统的初始化开始说起.
在linux-2.6.25/drivers/usb/core/usb.c中.有这样的一段代码:
subsys_initcall(usb_init);
对于subsys_initcall()我们已经不陌生了,在很多地方都会遇到它.在系统初始化的时候,会调用到它对应的函数.在这里,即为usb_init().
在usb_init()中,有这样的代码片段:
static int __init usb_init(void)
{
    ……
    ……
retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
    if (!retval)
        goto out;
    ……
}
在这里终于看到usb_register_device_driver()了. usb_generic_driver会匹配到所有usb 设备.定义如下:
struct usb_device_driver usb_generic_driver = {
    .name = "usb",
    .probe = generic_probe,
    .disconnect = generic_disconnect,
#ifdef  CONFIG_PM
    .suspend = generic_suspend,
    .resume = generic_resume,
#endif
    .supports_autosuspend = 1,
};
现在是到分析probe()的时候了.我们这里说的并不是usb_generic_driver中的probe,而是封装在struct usb_device_driver中的driver对应的probe函数.
在上面的分析, usb_register_device_driver()将封装的driver的probe()函数设置为了usb_probe_device().代码如下:
static int usb_probe_device(struct device *dev)
{
    struct usb_device_driver *udriver = to_usb_device_driver(dev->driver);
    struct usb_device *udev;
    int error = -ENODEV;
 
    dev_dbg(dev, "%s\n", __FUNCTION__);
 
    //再次判断dev是否是usb device
    if (!is_usb_device(dev))    /* Sanity check */
        return error;
 
    udev = to_usb_device(dev);
 
    /* TODO: Add real matching code */
 
    /* The device should always appear to be in use
     * unless the driver suports autosuspend.
     */
     //pm_usage_cnt: autosuspend计数.如果此计数为1,则不允许autosuspend
    udev->pm_usage_cnt = !(udriver->supports_autosuspend);
 
    error = udriver->probe(udev);
    return error;
}
首先,可以通过container_of()将封装的struct device, struct device_driver转换为struct usb_device和struct usb_device_driver.
然后,再执行一次安全检查,判断dev是否是属于一个usb device.
在这里,我们首次接触到了hub suspend.如果不支持suspend(udriver->supports_autosuspend为0),则udev->pm_usage_cnt被设为1,也就是说,它不允许设备suspend.否则,将其初始化为0.
最后,正如你所看到的,流程转入到了usb_device_driver->probe().
对应到root hub,流程会转入到generic_probe().代码如下:
 
static int generic_probe(struct usb_device *udev)
{
    int err, c;
 
    /* put device-specific files into sysfs */
    usb_create_sysfs_dev_files(udev);
 
    /* Choose and set the configuration.  This registers the interfaces
     * with the driver core and lets interface drivers bind to them.
     */
    if (udev->authorized == 0)
        dev_err(&udev->dev, "Device is not authorized for usage\n");
    else {
        //选择和设定一个配置
        c = usb_choose_configuration(udev);
        if (c >= 0) {
            err = usb_set_configuration(udev, c);
            if (err) {
                dev_err(&udev->dev, "can't set config #%d, error %d\n",
                    c, err);
                /* This need not be fatal.  The user can try to
                 * set other configurations. */
            }
        }
    }
    /* USB device state == configured ... usable */
    usb_notify_add_device(udev);
 
    return 0;
}
usb_create_sysfs_dev_files()是在sysfs中显示几个属性文件,不进行详细分析,有兴趣的可以结合之前分析的<<linux设备模型详解>>来看下代码.
usb_notify_add_device()是有关notify链表的操作,这里也不做详细分析.
至于udev->authorized,在root hub的初始化中,是会将其初始化为1的.后面的逻辑就更简单了.为root hub 选择一个配置然后再设定这个配置.
还记得我们在分析root hub的时候,在usb_new_device()中,会将设备的所有配置都取出来,然后将它们放到了usb_device-> config.现在这些信息终于会派上用场了.不太熟悉的,可以看下本站之前有关usb控制器驱动的文档.
 
Usb2.0 spec上规定,对于hub设备,只能有一个config,一个interface,一个endpoint.实际上,在这里,对hub的选择约束不大,反正就一个配置,不管怎么样,选择和设定都是这个配置.
不过,为了方便以后的分析,我们还是跟进去看下usb_choose_configuration()和usb_set_configuration()的实现.
实际上,经过这两个函数之后,设备的probe()过程也就会结束了.
 
4.2.1:usb_choose_configuration()函数分析
usb_choose_configuration()的代码如下:
//为usb device选择一个合适的配置
int usb_choose_configuration(struct usb_device *udev)
{
    int i;
    int num_configs;
    int insufficient_power = 0;
    struct usb_host_config *c, *best;
 
    best = NULL;
    //config数组
    c = udev->config;
    //config项数
    num_configs = udev->descriptor.bNumConfigurations;
    //遍历所有配置项
    for (i = 0; i < num_configs; (i++, c++)) {
        struct usb_interface_descriptor *desc = NULL;
 
        /* It's possible that a config has no interfaces! */
        //配置项的接口数目
        //取配置项的第一个接口
        if (c->desc.bNumInterfaces > 0)
            desc = &c->intf_cache[0]->altsetting->desc;
 
        /*
         * HP's USB bus-powered keyboard has only one configuration
         * and it claims to be self-powered; other devices may have
         * similar errors in their descriptors.  If the next test
         * were allowed to execute, such configurations would always
         * be rejected and the devices would not work as expected.
         * In the meantime, we run the risk of selecting a config
         * that requires external power at a time when that power
         * isn't available.  It seems to be the lesser of two evils.
         *
         * Bugzilla #6448 reports a device that appears to crash
         * when it receives a GET_DEVICE_STATUS request!  We don't
         * have any other way to tell whether a device is self-powered,
         * but since we don't use that information anywhere but here,
         * the call has been removed.
         *
         * Maybe the GET_DEVICE_STATUS call and the test below can
         * be reinstated when device firmwares become more reliable.
         * Don't hold your breath.
         */
#if 0
        /* Rule out self-powered configs for a bus-powered device */
        if (bus_powered && (c->desc.bmAttributes &
                    USB_CONFIG_ATT_SELFPOWER))
            continue;
#endif
 
        /*
         * The next test may not be as effective as it should be.
         * Some hubs have errors in their descriptor, claiming
         * to be self-powered when they are really bus-powered.
         * We will overestimate the amount of current such hubs
         * make available for each port.
         *
         * This is a fairly benign sort of failure.  It won't
         * cause us to reject configurations that we should have
         * accepted.
         */
 
        /* Rule out configs that draw too much bus current */
        //电源不足.配置描述符中的电力是所需电力的1/2
        if (c->desc.bMaxPower * 2 > udev->bus_mA) {
            insufficient_power++;
            continue;
        }
 
        /* When the first config's first interface is one of Microsoft's
         * pet nonstandard Ethernet-over-USB protocols, ignore it unless
         * this kernel has enabled the necessary host side driver.
         */
        if (i == 0 && desc && (is_rndis(desc) || is_activesync(desc))) {
#if !defined(CONFIG_USB_NET_RNDIS_HOST) && !defined(CONFIG_USB_NET_RNDIS_HOST_MODULE)
            continue;
#else
            best = c;
#endif
        }
 
        /* From the remaining configs, choose the first one whose
         * first interface is for a non-vendor-specific class.
         * Reason: Linux is more likely to have a class driver
         * than a vendor-specific driver. */
         //选择一个不是USB_CLASS_VENDOR_SPEC的配置
        else if (udev->descriptor.bDeviceClass !=
                        USB_CLASS_VENDOR_SPEC &&
                (!desc || desc->bInterfaceClass !=
                        USB_CLASS_VENDOR_SPEC)) {
            best = c;
            break;
        }
 
        /* If all the remaining configs are vendor-specific,
         * choose the first one. */
        else if (!best)
            best = c;
    }
 
    if (insufficient_power > 0)
        dev_info(&udev->dev, "rejected %d configuration%s "
            "due to insufficient available bus power\n",
            insufficient_power, plural(insufficient_power));
    //如果选择好了配置,返回配置的序号,否则,返回-1
    if (best) {
        i = best->desc.bConfigurationValue;
        dev_info(&udev->dev,
            "configuration #%d chosen from %d choice%s\n",
            i, num_configs, plural(num_configs));
    } else {
        i = -1;
        dev_warn(&udev->dev,
            "no configuration chosen from %d choice%s\n",
            num_configs, plural(num_configs));
    }
    return i;
}
Linux按照自己的喜好选择好了配置之后,返回配置的序号.不过对于HUB来说,它有且仅有一个配置.
 
4.2.2:usb_set_configuration()函数分析
既然已经选好配置了,那就告诉设备选好的配置,这个过程是在usb_set_configuration()中完成的.它的代码如下:
int usb_set_configuration(struct usb_device *dev, int configuration)
{
    int i, ret;
    struct usb_host_config *cp = NULL;
    struct usb_interface **new_interfaces = NULL;
    int n, nintf;
 
    if (dev->authorized == 0 || configuration == -1)
        configuration = 0;
    else {
        for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
            if (dev->config[i].desc.bConfigurationValue ==
                    configuration) {
                cp = &dev->config[i];
                break;
            }
        }
    }
 
    if ((!cp && configuration != 0))
        return -EINVAL;
 
    /* The USB spec says configuration 0 means unconfigured.
     * But if a device includes a configuration numbered 0,
     * we will accept it as a correctly configured state.
     * Use -1 if you really want to unconfigure the device.
     */
    if (cp && configuration == 0)
        dev_warn(&dev->dev, "config 0 descriptor??\n");
首先,根据选择好的配置号找到相应的配置,在这里要注意了, dev->config[]数组中的配置并不是按照配置的序号来存放的,而是按照遍历到顺序来排序的.因为有些设备在发送配置描述符的时候,并不是按照配置序号来发送的,例如,配置2可能在第一次GET_CONFIGURATION就被发送了,而配置1可能是在第二次GET_CONFIGURATION才能发送.
取得配置描述信息之后,要对它进行有效性判断,注意一下本段代码的最后几行代码:usb2.0 spec上规定,0号配置是无效配置,但是可能有些厂商的设备并末按照这一约定,所以在linux中,遇到这种情况只是打印出警告信息,然后尝试使用这一配置.
    /* Allocate memory for new interfaces before doing anything else,
     * so that if we run out then nothing will have changed. */
 
    n = nintf = 0;
    if (cp) {
        //接口总数
        nintf = cp->desc.bNumInterfaces;
        //interface指针数组,
        new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
                GFP_KERNEL);
        if (!new_interfaces) {
            dev_err(&dev->dev, "Out of memory\n");
            return -ENOMEM;
        }
 
        for (; n < nintf; ++n) {
            new_interfaces[n] = kzalloc(
                    sizeof(struct usb_interface),
                    GFP_KERNEL);
            if (!new_interfaces[n]) {
                dev_err(&dev->dev, "Out of memory\n");
                ret = -ENOMEM;
free_interfaces:
                while (--n >= 0)
                    kfree(new_interfaces[n]);
                kfree(new_interfaces);
                return ret;
            }
        }
 
        //如果总电源小于所需电流,打印警告信息
        i = dev->bus_mA - cp->desc.bMaxPower * 2;
        if (i < 0)
            dev_warn(&dev->dev, "new config #%d exceeds power "
                    "limit by %dmA\n",
                    configuration, -i);
    }
在这里,注要是为new_interfaces分配空间,要这意的是, new_interfaces是一个二级指针,它的最终指向是struct usb_interface结构.特别的,如果总电流数要小于配置所需电流,则打印出警告消息.实际上,这种情况在usb_choose_configuration()中已经进行了过滤.
 
    /* Wake up the device so we can send it the Set-Config request */
    //要对设备进行配置了,先唤醒它
    ret = usb_autoresume_device(dev);
    if (ret)
        goto free_interfaces;
 
    /* if it's already configured, clear out old state first.
     * getting rid of old interfaces means unbinding their drivers.
     */
     //不是处于ADDRESS状态,先清除设备的状态
    if (dev->state != USB_STATE_ADDRESS)
        usb_disable_device(dev, 1); /* Skip ep0 */
 
    //发送控制消息,选取配置
    ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
                  USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
                  NULL, 0, USB_CTRL_SET_TIMEOUT);
    if (ret < 0) {
        /* All the old state is gone, so what else can we do?
         * The device is probably useless now anyway.
         */
        cp = NULL;
    }
 
    //dev->actconfig存放的是当前设备选取的配置
    dev->actconfig = cp;
    if (!cp) {
        usb_set_device_state(dev, USB_STATE_ADDRESS);
        usb_autosuspend_device(dev);
        goto free_interfaces;
    }
    //将状态设为CONFIGURED
    usb_set_device_state(dev, USB_STATE_CONFIGURED);
接下来,就要对设备进行配置了,首先,将设备唤醒.回忆一下我们在分析UHCI驱动时,列出来的设备状态图.只有在ADDRESS状态才能转入到CONFIG状态.(SUSPEND状态除外). 所以,如果设备当前不是处于ADDRESS状态,就需要将设备的状态初始化.usb_disable_device()函数是个比较重要的操作,在接下来再对它进行详细分析.
接着,发送SET_CONFIGURATION的Control消息给设备,用来选择配置
最后,将dev->actconfig指向选定的配置,将设备状态设为CONFIG
 
    /* Initialize the new interface structures and the
     * hc/hcd/usbcore interface/endpoint state.
     */
     //遍历所有的接口
    for (i = 0; i < nintf; ++i) {
        struct usb_interface_cache *intfc;
        struct usb_interface *intf;
        struct usb_host_interface *alt;
 
        cp->interface[i] = intf = new_interfaces[i];
        intfc = cp->intf_cache[i];
        intf->altsetting = intfc->altsetting;
        intf->num_altsetting = intfc->num_altsetting;
        //是否关联的接口描述符,定义在minor usb 2.0 spec中
        intf->intf_assoc = find_iad(dev, cp, i);
        kref_get(&intfc->ref);
 
        //选择0号设置
        alt = usb_altnum_to_altsetting(intf, 0);
 
        /* No altsetting 0?  We'll assume the first altsetting.
         * We could use a GetInterface call, but if a device is
         * so non-compliant that it doesn't have altsetting 0
         * then I wouldn't trust its reply anyway.
         */
 
        //如果0号设置不存在,选排在第一个设置
        if (!alt)
            alt = &intf->altsetting[0];
 
        //当前的配置
        intf->cur_altsetting = alt;
        usb_enable_interface(dev, intf);
        intf->dev.parent = &dev->dev;
        intf->dev.driver = NULL;
        intf->dev.bus = &usb_bus_type;
        intf->dev.type = &usb_if_device_type;
        intf->dev.dma_mask = dev->dev.dma_mask;
        device_initialize(&intf->dev);
        mark_quiesced(intf);
        sprintf(&intf->dev.bus_id[0], "%d-%s:%d.%d",
            dev->bus->busnum, dev->devpath,
            configuration, alt->desc.bInterfaceNumber);
    }
    kfree(new_interfaces);
 
    if (cp->string == NULL)
        cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
之前初始化的new_interfaces在这里终于要派上用场了.初始化各接口,从上面的初始化过程中,我们可以看出:
Intf->altsetting,表示接口的各种设置
Intf->num_altsetting:表示接口的设置数目
Intf->intf_assoc:接口的关联接口(定义于minor usb 2.0 spec)
Intf->cur_altsetting:接口的当前设置.
结合之前在UHCI中的分析,我们总结一下:
Usb_dev->config,其实是一个数组,存放设备的配置.usb_dev->config[m]-> interface[n]表示第m个配置的第n个接口的intercace结构.(m,n不是配置序号和接口序号 *^_^*).
注意这个地方对intf内嵌的struct devcie结构赋值,它的type被赋值为了usb_if_device_type.bus还是usb_bus_type.可能你已经反应过来了,要和这个device匹配的设备是interface的驱动.
特别的,这里的device的命名:
sprintf(&intf->dev.bus_id[0], "%d-%s:%d.%d",
            dev->bus->busnum, dev->devpath,
            configuration, alt->desc.bInterfaceNumber);
dev指的是这个接口所属的usb_dev,结合我们之前在UHCI中关于usb设备命名方式的描述.可得出它的命令方式如下:
USB总线号-设备路径:配置号.接口号.
例如,在我的虚拟机上:
[root@localhost devices]# pwd
/sys/bus/usb/devices
[root@localhost devices]# ls
1-0:1.0  usb1
[root@localhost devices]#
可以得知,系统只有一个usb control.
1-0:1.0:表示,第一个usb control下的root hub的1号配置的0号接口.
那在插入U盘之后,会发生什么变化呢?不着急,我们等着往下面看,待分析到的时候,我自然就会列出来了 ^_^
usb_enable_interface()用来启用接口,也就是启用接口中的每一个endpoint.这个接口比较简单,其中调用的子函数usb_enable_endpoint()在分析UHCI的时候已经详细分析过了.在这里就不再赘述了.
在这里,还涉及到一个很有意思的函数, mark_quiesced().从字面意思上看来,它是标记接口为停止状态.它的”反函数”是mark_active().两个函数如下示:
static inline void mark_active(struct usb_interface *f)
{
    f->is_active = 1;
    f->dev.power.power_state.event = PM_EVENT_ON;
}
 
static inline void mark_quiesced(struct usb_interface *f)
{
    f->is_active = 0;
    f->dev.power.power_state.event = PM_EVENT_SUSPEND;
}
从代码看来,它只是对接口的活动标志(is_active)进行了设置.
 
    /* Now that all the interfaces are set up, register them
     * to trigger binding of drivers to interfaces.  probe()
     * routines may install different altsettings and may
     * claim() any interfaces not yet bound.  Many class drivers
     * need that: CDC, audio, video, etc.
     */
 
    //注册每一个接口?
    for (i = 0; i < nintf; ++i) {
        struct usb_interface *intf = cp->interface[i];
 
        dev_dbg(&dev->dev,
            "adding %s (config #%d, interface %d)\n",
            intf->dev.bus_id, configuration,
            intf->cur_altsetting->desc.bInterfaceNumber);
        ret = device_add(&intf->dev);
        if (ret != 0) {
            dev_err(&dev->dev, "device_add(%s) --> %d\n",
                intf->dev.bus_id, ret);
            continue;
        }
        usb_create_sysfs_intf_files(intf);
    }
 
    //使设备suspend
    usb_autosuspend_device(dev);
    return 0;
}
最后,注册intf内嵌的device结构.设备配置完成了,为了省电,可以将设备置为SUSPEND状态.
 
这个函数中还有几个比较重要的子函数,依次分析如下:
1: usb_disable_device()函数.
顾名思义,这个函数是将设备disable掉.代码如下:
void usb_disable_device(struct usb_device *dev, int skip_ep0)
{
    int i;
 
    dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__,
        skip_ep0 ? "non-ep0" : "all");
    for (i = skip_ep0; i < 16; ++i) {
        usb_disable_endpoint(dev, i);
        usb_disable_endpoint(dev, i + USB_DIR_IN);
    }
    dev->toggle[0] = dev->toggle[1] = 0;
 
    /* getting rid of interfaces will disconnect
     * any drivers bound to them (a key side effect)
     */
    if (dev->actconfig) {
        for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
            struct usb_interface    *interface;
 
            /* remove this interface if it has been registered */
            interface = dev->actconfig->interface[i];
            if (!device_is_registered(&interface->dev))
                continue;
            dev_dbg(&dev->dev, "unregistering interface %s\n",
                interface->dev.bus_id);
            usb_remove_sysfs_intf_files(interface);
            device_del(&interface->dev);
        }
 
        /* Now that the interfaces are unbound, nobody should
         * try to access them.
         */
        for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
            put_device(&dev->actconfig->interface[i]->dev);
            dev->actconfig->interface[i] = NULL;
        }
        dev->actconfig = NULL;
        if (dev->state == USB_STATE_CONFIGURED)
            usb_set_device_state(dev, USB_STATE_ADDRESS);
    }
}
第二个参数是skip_ep0.是表示是否跳过ep0.为1表示跳过,为0表示清除掉设备中的所有endpoint.
这个函数可以分为两个部份,一部份是对usb_dev中的endpoint进行操作,一方面是释放usb_dev的选定配置项.
对于第一部份:
从代码中可能看到,如果skip_ep0为1,那就是从1开始循环,所以,就跳过了ep0.另外,一个端点号对应了两个端点,一个IN,一个OUT.IN端点比OUT端点要大USB_DIR_IN.
另外,既然设备都已经被禁用了,那toggle也应该回归原位了.因些将两个方向的toggle都设为0. usb_disable_endpoint()是一个很有意思的处理.它的代码如下:
void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr)
{
    unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
    struct usb_host_endpoint *ep;
 
    if (!dev)
        return;
    //在dev->ep_out和dev->ep_in删除endpoint
    if (usb_endpoint_out(epaddr)) {
        ep = dev->ep_out[epnum];
        dev->ep_out[epnum] = NULL;
    } else {
        ep = dev->ep_in[epnum];
        dev->ep_in[epnum] = NULL;
    }
    //禁用掉此ep.包括删除ep上提交的urb 和ep上的QH
    if (ep) {
        ep->enabled = 0;
        usb_hcd_flush_endpoint(dev, ep);
        usb_hcd_disable_endpoint(dev, ep);
    }
}
在dev->ep_in[]/dev->ep_out[]中删除endpoint,这点很好理解.比较难以理解的是后面的两个操作,即usb_hcd_flush_endpoint()和usb_hcd_disable_endpoint().根据之前分析的UHCI的驱动,我们得知,对于每个endpoint都有一个传输的qh,这个qh上又挂上了要传输的urb.因此,这两个函数一个是删除urb,一个是删除qh.
usb_hcd_flush_endpoint()的代码如下:
void usb_hcd_flush_endpoint(struct usb_device *udev,
        struct usb_host_endpoint *ep)
{
    struct usb_hcd      *hcd;
    struct urb      *urb;
 
    if (!ep)
        return;
    might_sleep();
    hcd = bus_to_hcd(udev->bus);
 
    /* No more submits can occur */
    //在提交urb时,将urb加到ep->urb_list上的时候要持锁
    //因此,这里持锁的话,无法发生中断和提交urb
    spin_lock_irq(&hcd_urb_list_lock);
rescan:
//将挂在ep->urb_list上的所有urb unlink.注意这里unlink一般只会设置urb->unlinked的
//值,不会将urb从ep->urb_list上删除.只有在UHCI的中断处理的时候,才会调用
//uhci_giveback_urb()将其从ep->urb_list中删除
    list_for_each_entry (urb, &ep->urb_list, urb_list) {
        int is_in;
 
        if (urb->unlinked)
            continue;
        usb_get_urb (urb);
        is_in = usb_urb_dir_in(urb);
        spin_unlock(&hcd_urb_list_lock);
 
        /* kick hcd */
        unlink1(hcd, urb, -ESHUTDOWN);
        dev_dbg (hcd->self.controller,
            "shutdown urb %p ep%d%s%s\n",
            urb, usb_endpoint_num(&ep->desc),
            is_in ? "in" : "out",
            ({  char *s;
 
                 switch (usb_endpoint_type(&ep->desc)) {
                 case USB_ENDPOINT_XFER_CONTROL:
                    s = ""; break;
                 case USB_ENDPOINT_XFER_BULK:
                    s = "-bulk"; break;
                 case USB_ENDPOINT_XFER_INT:
                    s = "-intr"; break;
                 default:
                    s = "-iso"; break;
                };
                s;
            }));
        usb_put_urb (urb);
 
        /* list contents may have changed */
        //在这里解开锁了,对应ep->urb_list上又可以提交urb.
        //这里释放释的话,主要是为了能够产生中断
        spin_lock(&hcd_urb_list_lock);
        goto rescan;
    }
    spin_unlock_irq(&hcd_urb_list_lock);
 
    /* Wait until the endpoint queue is completely empty */
 
    //等待urb被调度完
    while (!list_empty (&ep->urb_list)) {
        spin_lock_irq(&hcd_urb_list_lock);
 
        /* The list may have changed while we acquired the spinlock */
        urb = NULL;
        if (!list_empty (&ep->urb_list)) {
            urb = list_entry (ep->urb_list.prev, struct urb,
                    urb_list);
            usb_get_urb (urb);
        }
        spin_unlock_irq(&hcd_urb_list_lock);
 
        if (urb) {
            usb_kill_urb (urb);
            usb_put_urb (urb);
        }
    }
}
仔细体会这里的代码,为什么在前一个循环中,要使用goto rescan重新开始这个循环呢?这是因为在后面已经将自旋锁释放了,因此,就会有这样的可能,在函数中操作的urb,可能已经被调度完释放了.因此,再对这个urb操作就会产生错误.所以,需要重新开始这个循环.
那后一个循环又是干什么的呢?后一个循环就是等待urb被调度完.有人就会有这样的疑问了,这里一边等待,然后endpoint一边还提交urb,那这个函数岂不是要耗掉很长时间?
在这里,不要忘记了前面的操作,在调这个函数之前, usb_disable_endpoint()已经将这个endpoint禁用了,也就是说该endpoint不会产生新的urb.因为,在后一个循环中,只需要等待那些被unlink的urb调度完即可.在usb_kill_urb()中,会一直等待,直到这个urb被调度完成为止.
可能有人又会有这样的疑问:
Usb_kill_urb()中也有unlink urb的操作,为什么这里要分做两个循环呢?
 
 
另外的一个函数是usb_hcd_disable_endpoint().代码如下:
void usb_hcd_disable_endpoint(struct usb_device *udev,
        struct usb_host_endpoint *ep)
{
    struct usb_hcd      *hcd;
 
    might_sleep();
    hcd = bus_to_hcd(udev->bus);
    if (hcd->driver->endpoint_disable)
        hcd->driver->endpoint_disable(hcd, ep);
}
从上面的代码可以看到,操作转向了hcd->driver的endpoint_disable()接口.
以UHCI为例.在UHCI中,对应的接口为:
static void uhci_hcd_endpoint_disable(struct usb_hcd *hcd,
        struct usb_host_endpoint *hep)
{
    struct uhci_hcd *uhci = hcd_to_uhci(hcd);
    struct uhci_qh *qh;
 
    spin_lock_irq(&uhci->lock);
    qh = (struct uhci_qh *) hep->hcpriv;
    if (qh == NULL)
        goto done;
 
    while (qh->state != QH_STATE_IDLE) {
        ++uhci->num_waiting;
        spin_unlock_irq(&uhci->lock);
        wait_event_interruptible(uhci->waitqh,
                qh->state == QH_STATE_IDLE);
        spin_lock_irq(&uhci->lock);
        --uhci->num_waiting;
    }
 
    uhci_free_qh(uhci, qh);
done:
    spin_unlock_irq(&uhci->lock);
}
这个函数没啥好说的,就是在uhci->waitqh上等待队列状态变为QH_STATE_IDLE.来回忆一下,qh在什么情况下才会变为QH_STATE_IDLE呢? 是在qh没有待传输的urb的时候.
然后,将qh释放.
 
现在我们来接着看usb_disable_device()的第二个部份.
第二部份主要是针对dev->actconfig进行的操作, dev->actconfig存放的是设备当前的配置,现在要将设备设回Address状态.就些东西当然是用不了上的了.释放dev->actconfig->interface[]中的各元素,注意不要将dev->actconfig->interface[]所指向的信息释放了,它都是指向dev->config[]-> intf_cache[]中的东西,这些东西一释放,usb device在Get_ Configure所获得的信息就会部丢失了.
就这样, usb_disable_device()函数也走到了尾声.
 
2: usb_cache_string()函数
这个函数我们在分析UHCI的时候已经接触过,但末做详细的分析.
首先了解一下这个函数的作用,有时候,为了形象的说明,会提供一个字符串形式的说明.例如,对于配置描述符来说,它的iConfiguration就表示一个字符串索引,然后用Get_String就可以取得这个索引所对应的字串了.不过,事情并不是这么简单.因为字符串对应不同的编码,所以这里还会对应有编码的处理.来看具体的代码:
char *usb_cache_string(struct usb_device *udev, int index)
{
    char *buf;
    char *smallbuf = NULL;
    int len;
 
    if (index <= 0)
        return NULL;
 
    //不知道字符到底有多长,就按最长256字节处理
    buf = kmalloc(256, GFP_KERNEL);
    if (buf) {
        len = usb_string(udev, index, buf, 256);
        //取到字符了,分配合适的长度
        if (len > 0) {
            smallbuf = kmalloc(++len, GFP_KERNEL);
            if (!smallbuf)
                return buf;
            //将字符copy过去
            memcpy(smallbuf, buf, len);
        }
        //释放旧空间
        kfree(buf);
    }
    return smallbuf;
}
这个函数没啥好说的,流程转入到usb_string中.代码如下:
int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
{
    unsigned char *tbuf;
    int err;
    unsigned int u, idx;
 
    if (dev->state == USB_STATE_SUSPENDED)
        return -EHOSTUNREACH;
    if (size <= 0 || !buf || !index)
        return -EINVAL;
    buf[0] = 0;
    tbuf = kmalloc(256, GFP_KERNEL);
    if (!tbuf)
        return -ENOMEM;
 
    /* get langid for strings if it's not yet known */
    //先取得设备支持的编码ID
    if (!dev->have_langid) {
        //以0号序号和编码0,Get_String就可得到设备所支持的编码列表
        err = usb_string_sub(dev, 0, 0, tbuf);
        //如果发生了错误,或者是取得的数据超短(最短为4字节)
        if (err < 0) {
            dev_err(&dev->dev,
                "string descriptor 0 read error: %d\n",
                err);
            goto errout;
        } else if (err < 4) {
            dev_err(&dev->dev, "string descriptor 0 too short\n");
            err = -EINVAL;
            goto errout;
        }
        //取设备支持的第一个编码
        else {
            dev->have_langid = 1;
            dev->string_langid = tbuf[2] | (tbuf[3] << 8);
            /* always use the first langid listed */
            dev_dbg(&dev->dev, "default language 0x%04x\n",
                dev->string_langid);
        }
    }
 
    //以编码ID和序号Index作为参数Get_String取得序号对应的字串
    err = usb_string_sub(dev, dev->string_langid, index, tbuf);
    if (err < 0)
        goto errout;
 
    //空一个字符来用来存放结束符
    size--;     /* leave room for trailing NULL char in output buffer */
    //两字节一组,(Unicode编码的)
    for (idx = 0, u = 2; u < err; u += 2) {
        if (idx >= size)
            break;
        //如果高字节有值,说明它不是ISO-8859-1编码的,将它置为?
        //否则,就将低位的值存放到buf中
        if (tbuf[u+1])          /* high byte */
            buf[idx++] = '?';  /* non ISO-8859-1 character */
        else
            buf[idx++] = tbuf[u];
    }
    //在最后一位赋0,字串结尾
    buf[idx] = 0;
    //返回字串的长度,(算上了最后的结尾字符)
    err = idx;
    //如果该描述符不是STRING描述符,打印出错误提示
    if (tbuf[1] != USB_DT_STRING)
        dev_dbg(&dev->dev,
            "wrong descriptor type %02x for string %d (\"%s\")\n",
            tbuf[1], index, buf);
 
 errout:
    //释放空间,返回长度
    kfree(tbuf);
    return err;
}
结合代码中的注释,就很容易理解这一函数了,在此不对这一函数做详细分析.
跟踪进usb_string_sub().代码如下:
static int usb_string_sub(struct usb_device *dev, unsigned int langid,
              unsigned int index, unsigned char *buf)
{
    int rc;
 
    /* Try to read the string descriptor by asking for the maximum
     * possible number of bytes */
     //如果设备不需要Fixup 就发出Get_String
    if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
        rc = -EIO;
    else
        rc = usb_get_string(dev, langid, index, buf, 255);
 
    /* If that failed try to read the descriptor length, then
     * ask for just that many bytes */
     //如果Get_String失败或者取得长度有问题.就先取字符描述符的头部
     //再以实际的长度和参数,再次Get_String
    if (rc < 2) {
        rc = usb_get_string(dev, langid, index, buf, 2);
        if (rc == 2)
            rc = usb_get_string(dev, langid, index, buf, buf[0]);
    }
 
    //如果成功
    if (rc >= 2) {
        //如果前两个字节为空.则需要找到数据的有效起始位置
        if (!buf[0] && !buf[1])
            usb_try_string_workarounds(buf, &rc);
 
        /* There might be extra junk at the end of the descriptor */
        //整调一下描述符的长度
        if (buf[0] < rc)
            rc = buf[0];
        //将rc置为了一个偶数.
        rc = rc - (rc & 1); /* force a multiple of two */
    }
 
    //长度最终小于2.返回错误值
    if (rc < 2)
        rc = (rc < 0 ? rc : -EINVAL);
 
    return rc;
}
在这个地方,有个错误处理,可能有的设备你一次用255的长度去取它对字符串会返回一个错误,所以,在用255长度返回错误的时候,先以2为长度取它的描述符头度,再以描述符的实际长度去取字符串描述符串.
另外,在描述符的前两个字节都为空的情况下,就需要计算它的有效长度.在代码中,这一工作是由usb_try_string_workarounds()完成的.
static void usb_try_string_workarounds(unsigned char *buf, int *length)
{
    int newlength, oldlength = *length;
    //前两个字节是描述符头部,所以从2开始循环.
    //Unicode编码用两个字节来表示一个字符. 所以每次循环完了之后要+2
    for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
        //低字节是不可打印字符,或者高字节不为空(不是ISO-8859-1), 就退出循环.
        if (!isprint(buf[newlength]) || buf[newlength + 1])
            break;
 
    //修正字符串描述符的实际长度.
    //如果newlength 等于2.说明字符中描述符没有带字串
    if (newlength > 2) {
        buf[0] = newlength;
        *length = newlength;
    }
}
这个函数涉及到编码方面的东东,建议参阅fudan_abc的<< Linux那些事儿之我是USB core >>,上面的较详细的描述.
至此, usb_cache_string()完分析完了.
到这里,usb device driver的probe过程也就完成了.
 
五:hub接口驱动分析
5.1:接口驱动架构
是时候来分析接口驱动的架构了.
我们在上面看到了接口设备的注册.在开篇的时候分析了接口驱动的注册.我们首先来分析接口驱备和接口驱动的匹配.
代码还是在usb_bus_type->match().只不过是对应另外的一种情况了.将相关代码列出:
static int usb_device_match(struct device *dev, struct device_driver *drv)
{
    ……
    if (is_usb_device(dev)) {
        ……
}
    //interface的情况
    else {
        struct usb_interface *intf;
        struct usb_driver *usb_drv;
        const struct usb_device_id *id;
 
        /* device drivers never match interfaces */
        if (is_usb_device_driver(drv))
            return 0;
 
        intf = to_usb_interface(dev);
        usb_drv = to_usb_driver(drv);
 
        id = usb_match_id(intf, usb_drv->id_table);
        if (id)
            return 1;
 
        id = usb_match_dynamic_id(intf, usb_drv);
        if (id)
            return 1;
    }
 
    return 0;
}
经过前面的分析,因为在注册接口设备的时候,是将type设为usb_if_device_type,因此,这个函数第一个if是不会满足的.
首先,将struct device和struct device_driver转换为被封装的struct usb_interface和struct usb_driver.紧接着,我们看到了两个匹配,一个是usb_match_id().另外一个是usb_match_dynamic_id().后者只有在前者没有匹配成功的情况下才能调用.我们也可以看到, struct usb_driver中一个struct usb_device_id类型的数组(id_table字段)和一个dynids链表.哪id和dyname_id有什么区别呢?
一般来说,id_table是usb 接口驱动静态定义的可以和此驱动匹配设备的一些参数.而dyname_id是可以动态调整的.
你可以通过写/sys/bus/usb/drivers/XXX/new_id来设置驱动的dyname_id.其中,XXX表示驱动的名称.
这两个函数的逻辑都差不多,我们以usb_match_id()为例进行分析.代码如下:
const struct usb_device_id *usb_match_id(struct usb_interface *interface,
                     const struct usb_device_id *id)
{
    /* proc_connectinfo in devio.c may call us with id == NULL. */
    //如果driver中没有定义符合条件的id_talbe.则不能静态匹配所有设备
    if (id == NULL)
        return NULL;
 
    /* It is important to check that id->driver_info is nonzero,
       since an entry that is all zeroes except for a nonzero
       id->driver_info is the way to create an entry that
       indicates that the driver want to examine every
       device and interface. */
       //如果id_talbe中,有定义的匹配项,则调用usb_match_one_id()进行匹配测试
       //如果成功,则返回匹配成功的id_talbe 项数.否则,继续下一项
    for (; id->idVendor || id->idProduct || id->bDeviceClass ||
           id->bInterfaceClass || id->driver_info; id++) {
        if (usb_match_one_id(interface, id))
            return id;
    }
 
    //如果没有匹配成功,则返回NULL
    return NULL;
}
Id_talbe所属的结构如下示:
struct usb_device_id {
    /* which fields to match against? */
    __u16       match_flags;
 
    /* Used for product specific matches; range is inclusive */
    __u16       idVendor;
    __u16       idProduct;
    __u16       bcdDevice_lo;
    __u16       bcdDevice_hi;
 
    /* Used for device class matches */
    __u8        bDeviceClass;
    __u8        bDeviceSubClass;
    __u8        bDeviceProtocol;
 
    /* Used for interface class matches */
    __u8        bInterfaceClass;
    __u8        bInterfaceSubClass;
    __u8        bInterfaceProtocol;
 
    /* not matched against */
    kernel_ulong_t  driver_info;
};
match_flags是一个匹配标志,表示要匹配哪一项.而后面的成员,例如idVendor, idProduct.表示具体要匹配项的值.
usb_match_one_id()的代码如下:
int usb_match_one_id(struct usb_interface *interface,
             const struct usb_device_id *id)
{
    struct usb_host_interface *intf;
    struct usb_device *dev;
 
    /* proc_connectinfo in devio.c may call us with id == NULL. */
    //再次判断id是否为空
    if (id == NULL)
        return 0;
 
    //接口听当前匹配
    intf = interface->cur_altsetting;
    //转换为所属的usb_dev
    dev = interface_to_usbdev(interface);
 
    //关于设备参数的匹配.只有在设备参数符合的情况下,才会进行接口
    //参数的匹配.
    if (!usb_match_device(dev, id))
        return 0;
   
    //下面是关于接口参数的匹配
    /* The interface class, subclass, and protocol should never be
     * checked for a match if the device class is Vendor Specific,
     * unless the match record specifies the Vendor ID. */
 //当设备是厂商自定义类型时(Vendor Specific).除非定义了//USB_DEVICE_ID_MATCH_VENDOR
     //否则是不需要匹配的
    if (dev->descriptor.bDeviceClass == USB_CLASS_VENDOR_SPEC &&
            !(id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) &&
            (id->match_flags & (USB_DEVICE_ID_MATCH_INT_CLASS |
                USB_DEVICE_ID_MATCH_INT_SUBCLASS |
                USB_DEVICE_ID_MATCH_INT_PROTOCOL)))
        return 0;
    //如果要匹配interface class
    if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_CLASS) &&
        (id->bInterfaceClass != intf->desc.bInterfaceClass))
        return 0;
    //如果要匹配interface subclass
    if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_SUBCLASS) &&
        (id->bInterfaceSubClass != intf->desc.bInterfaceSubClass))
        return 0;
    //如果要匹配interface protocol
    if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_PROTOCOL) &&
        (id->bInterfaceProtocol != intf->desc.bInterfaceProtocol))
        return 0;
 
    return 1;
}
这个函数逻辑比较简单.它先检测所属设备参数的匹配项.再检查接口参数的匹配项.由于这个函数比较简单,就不对它多费舌去解释了.
简单的说一下关于Vendor Specific class的设备,这个类型在USB Class Codes被定义如下:
This base class is defined for vendors to use as they please.  These class codes can be used in both Device and Interface Descriptors.
 
 
也就是说,这个类型是被厂商自定义的.它主要是靠SubClass和protocol来区分设备的.这些都是非标准定义的.
 
如果被这个match匹配成功的话,就会转入probe()了,由于bus中没有probe()函数,因此,流程转入到了与之匹配的驱动的probe函数.
记得在开篇的时候,分析过接口驱动,它的probe函数被设置为了usb_cache_string().代码如下:
static int usb_probe_interface(struct device *dev)
{
    struct usb_driver *driver = to_usb_driver(dev->driver);
    struct usb_interface *intf;
    struct usb_device *udev;
    const struct usb_device_id *id;
    int error = -ENODEV;
 
    dev_dbg(dev, "%s\n", __FUNCTION__);
    //如果是一个usb 设备,退出
    if (is_usb_device(dev))     /* Sanity check */
        return error;
 
    intf = to_usb_interface(dev);
    udev = interface_to_usbdev(intf);
 
    //如果所属设备的authorized 为0.错误,退出
    if (udev->authorized == 0) {
        dev_err(&intf->dev, "Device is not authorized for usage\n");
        return -ENODEV;
    }
 
    //再确认一下设备和驱动是否匹配
    id = usb_match_id(intf, driver->id_table);
    if (!id)
        id = usb_match_dynamic_id(intf, driver);
    //如果匹配
    if (id) {
        dev_dbg(dev, "%s - got id\n", __FUNCTION__);
 
        //使设备resume
        error = usb_autoresume_device(udev);
        if (error)
            return error;
 
        /* Interface "power state" doesn't correspond to any hardware
         * state whatsoever.  We use it to record when it's bound to
         * a driver that may start I/0:  it's not frozen/quiesced.
         */
         //将接口标志为active
        mark_active(intf);
        //intf->condition:接口的状态
        //USB_INTERFACE_BINDING:正在绑定
        intf->condition = USB_INTERFACE_BINDING;
 
        /* The interface should always appear to be in use
         * unless the driver suports autosuspend.
         */
         //intf->pm_usage_cnt:如果为1,接口不会autosuspend
        intf->pm_usage_cnt = !(driver->supports_autosuspend);
        //调用挂装结构的probe
        error = driver->probe(intf, id);
        //如果发生了错误,将接口标记成不活动的,接口状态设为USB_INTERFACE_UNBOUND
        if (error) {
            mark_quiesced(intf);
            intf->needs_remote_wakeup = 0;
            intf->condition = USB_INTERFACE_UNBOUND;
        }
        //如果成功,将接口状态设为USB_INTERFACE_BOUND
        else
            intf->condition = USB_INTERFACE_BOUND;
 
        //使设备suspend
        usb_autosuspend_device(udev);
    }
 
    return error;
}
至此为至,我们遇到了大量的usb_autoresume_device()/usb_autosuspend_device().先将它们放到一边,等以后再来详细分析他们的操作.
还记得,在usb_set_configuration()中,为每一个接口调用了mark_quiesced().所以在这个probe里,将正确匹配的接口调用mark_active(),将其标记为Active.
另外,我们来看一下,intf-> condition的几种情况,在代码中, condition属于enum usb_interface_condition结构.如下示:
enum usb_interface_condition {
    USB_INTERFACE_UNBOUND = 0,
    USB_INTERFACE_BINDING,
    USB_INTERFACE_BOUND,
    USB_INTERFACE_UNBINDING,
};
分别表示,没有绑定,正在绑定,已经绑定,正在解除绑定.
从上面的代码中可以看出.最后的流程会回溯到usb_driver的probe.
 
5.2:hub的接口驱动
经过上面的分析,我们知道,接口驱动和接口的匹配主要是根据接口的一些信息来判断的.那对于hub的接口,它的标志信息是什么呢?
在usb2.0 spec上,规定了hub的设备class和接口class都为0x9.也就是代码中定义的USB_CLASS_HUB.
同时,我们注意到,在usb_init()àusb_hub_init()中:
int usb_hub_init(void)
{
    if (usb_register(&hub_driver) < 0) {
        printk(KERN_ERR "%s: can't register hub driver\n",
            usbcore_name);
        return -1;
    }
 
    khubd_task = kthread_run(hub_thread, NULL, "khubd");
    if (!IS_ERR(khubd_task))
        return 0;
 
    /* Fall through if kernel_thread failed */
    usb_deregister(&hub_driver);
    printk(KERN_ERR "%s: can't start khubd\n", usbcore_name);
 
    return -1;
}
这个函数注册了hub_driver对应的接口驱动,还启动了一个内核线程.在这里,我们注意到, hub_driver的定义如下:
static struct usb_driver hub_driver = {
    .name =     "hub",
    .probe =    hub_probe,
    .disconnect =   hub_disconnect,
    .suspend =  hub_suspend,
    .resume =   hub_resume,
    .reset_resume = hub_reset_resume,
    .pre_reset =    hub_pre_reset,
    .post_reset =   hub_post_reset,
    .ioctl =    hub_ioctl,
    .id_table = hub_id_table,
    .supports_autosuspend = 1,
};
Hub_id_talbe被定义为:
static struct usb_device_id hub_id_table [] = {
    { .match_flags = USB_DEVICE_ID_MATCH_DEV_CLASS,
      .bDeviceClass = USB_CLASS_HUB},
    { .match_flags = USB_DEVICE_ID_MATCH_INT_CLASS,
      .bInterfaceClass = USB_CLASS_HUB},
    { }                      /* Terminating entry */
};
看到了没,这些信息就是hub 的接口class信息.
也就是说, hub_driver就是为们要找的hub 接口的驱动.
根据上面的分析,流程最终会到hub_driver->probe中,对应的接口为hub_probe().
 
5.2.1:接口驱动的probe过程
Hub_probe()的代码如下:
static int hub_probe(struct usb_interface *intf, const struct usb_device_id *id)
{
    struct usb_host_interface *desc;
    struct usb_endpoint_descriptor *endpoint;
    struct usb_device *hdev;
    struct usb_hub *hub;
 
    desc = intf->cur_altsetting;
    hdev = interface_to_usbdev(intf);
 
#ifdef  CONFIG_USB_OTG_BLACKLIST_HUB
    if (hdev->parent) {
        dev_warn(&intf->dev, "ignoring external hub\n");
        return -ENODEV;
    }
#endif
 
    /* Some hubs have a subclass of 1, which AFAICT according to the */
    /*  specs is not defined, but it works */
    //spec上规定接口的subclass为0.但为1时,也能工作
    if ((desc->desc.bInterfaceSubClass != 0) &&
        (desc->desc.bInterfaceSubClass != 1)) {
descriptor_error:
        dev_err (&intf->dev, "bad descriptor, ignoring hub\n");
        return -EIO;
    }
 
    /* Multiple endpoints? What kind of mutant ninja-hub is this? */
    //spec上规定hub interface的endpoint数目为1,这里的数目没有包括ep0
    if (desc->desc.bNumEndpoints != 1)
        goto descriptor_error;
    //端点描述符
    endpoint = &desc->endpoint[0].desc;
 
    /* If it's not an interrupt in endpoint, we'd better punt! */
    //不是IN方向的中断传输端点,有错误
    if (!usb_endpoint_is_int_in(endpoint))
        goto descriptor_error;
 
    /* We found a hub */
    dev_info (&intf->dev, "USB hub found\n");
 
    //初始化一个struct usb_hub结构
    hub = kzalloc(sizeof(*hub), GFP_KERNEL);
    if (!hub) {
        dev_dbg (&intf->dev, "couldn't kmalloc hub struct\n");
        return -ENOMEM;
    }
    //初始化引用计数
    kref_init(&hub->kref);
    //初始化event_list
    INIT_LIST_HEAD(&hub->event_list);
    //hub->intfdev:指向接口封装的dev 
    hub->intfdev = &intf->dev;
    //hub->hdev:hub所属的usb_dev
    hub->hdev = hdev;
    //初始化一个延时工作队列,用来管理hub LED的
    INIT_DELAYED_WORK(&hub->leds, led_work);
    //增加intf->dev的引用计数
    usb_get_intf(intf);
    //intf->dev的私有结构指和hub
    usb_set_intfdata (intf, hub);
    //接口需要远程唤醒
    intf->needs_remote_wakeup = 1;
 
    //如果是一个高速设备,增加highspeed_hubs  计数
    if (hdev->speed == USB_SPEED_HIGH)
        highspeed_hubs++;
 
    //配置hub
    if (hub_configure(hub, endpoint) >= 0)
        return 0;
 
    hub_disconnect (intf);
    return -ENODEV;
}
这个函数前一部份进行一些有效性检查,后半部份分配并初始化一个struct usb_hub结构.然后流程就转入了hub_configure().
hub_configure()函数是一个很重要的操作,它的代码如下:
static int hub_configure(struct usb_hub *hub,
    struct usb_endpoint_descriptor *endpoint)
{
    struct usb_device *hdev = hub->hdev;
    struct device *hub_dev = hub->intfdev;
    u16 hubstatus, hubchange;
    u16 wHubCharacteristics;
    unsigned int pipe;
    int maxp, ret;
    char *message;
 
    //为buffer分配空间,DMA分配,其物理地址存放在hub->buffer_dma中
    //buffer是一个指向数组的指针
    hub->buffer = usb_buffer_alloc(hdev, sizeof(*hub->buffer), GFP_KERNEL,
            &hub->buffer_dma);
    if (!hub->buffer) {
        message = "can't allocate hub irq buffer";
        ret = -ENOMEM;
        goto fail;
    }
 
    //为status分配空间
    hub->status = kmalloc(sizeof(*hub->status), GFP_KERNEL);
    if (!hub->status) {
        message = "can't kmalloc hub status buffer";
        ret = -ENOMEM;
        goto fail;
    }
    mutex_init(&hub->status_mutex);
 
    //为hub->descriptor分配空间
    hub->descriptor = kmalloc(sizeof(*hub->descriptor), GFP_KERNEL);
    if (!hub->descriptor) {
        message = "can't kmalloc hub descriptor";
        ret = -ENOMEM;
        goto fail;
    }
 
    /* Request the entire hub descriptor.
     * hub->descriptor can handle USB_MAXCHILDREN ports,
     * but the hub can/will return fewer bytes here.
     */
     //取得hub描述符
    ret = get_hub_descriptor(hdev, hub->descriptor,
            sizeof(*hub->descriptor));
    //如果Get_Descriptor失败或者hub端口超多
    if (ret < 0) {
        message = "can't read hub descriptor";
        goto fail;
    }
    //协议上规定hub最多有255个接口,但Linux认为31个接口已经够多了
    else if (hub->descriptor->bNbrPorts > USB_MAXCHILDREN) {
        message = "hub has too many ports!";
        ret = -ENODEV;
        goto fail;
    }
 
    //hdev->maxchild: hub的端口数目
    hdev->maxchild = hub->descriptor->bNbrPorts;
    dev_info (hub_dev, "%d port%s detected\n", hdev->maxchild,
        (hdev->maxchild == 1) ? "" : "s");
 
    //wHubCharacteristics字段
    wHubCharacteristics = le16_to_cpu(hub->descriptor->wHubCharacteristics);
 
    //是否是一个复合设备
    if (wHubCharacteristics & HUB_CHAR_COMPOUND) {
        int i;
        char    portstr [USB_MAXCHILDREN + 1];
 
        for (i = 0; i < hdev->maxchild; i++)
            //找到数组中的所在项和数组项中的位置
            portstr[i] = hub->descriptor->DeviceRemovable
                    [((i + 1) / 8)] & (1 << ((i + 1) % 8))
                ? 'F' : 'R';
        //以\0 结尾
        portstr[hdev->maxchild] = 0;
        dev_dbg(hub_dev, "compound device; port removable status: %s\n", portstr);
    } else
        dev_dbg(hub_dev, "standalone hub\n");
 
    //电源开关模式
    switch (wHubCharacteristics & HUB_CHAR_LPSM) {
        //ganged 电源开关,所有连接端口同时开机
        case 0x00:
            dev_dbg(hub_dev, "ganged power switching\n");
            break;
        //端口有单独的电源开关
        case 0x01:
            dev_dbg(hub_dev, "individual port power switching\n");
            break;
        //1X:保留, 表示没有电源开关   
        case 0x02:
        case 0x03:
            dev_dbg(hub_dev, "no power switching (usb 1.0)\n");
            break;
    }
 
    //过电流保护模式
    switch (wHubCharacteristics & HUB_CHAR_OCPM) {
        //全部电流保护
        case 0x00:
            dev_dbg(hub_dev, "global over-current protection\n");
            break;
        //个别连接端口电源保护
        case 0x08:
            dev_dbg(hub_dev, "individual port over-current protection\n");
            break;
        //没有过电流保护
        case 0x10:
        case 0x18:
            dev_dbg(hub_dev, "no over-current protection\n");
                        break;
    }
 
    //初始化TT相关的东西
    spin_lock_init (&hub->tt.lock);
    INIT_LIST_HEAD (&hub->tt.clear_list);
    INIT_WORK (&hub->tt.kevent, hub_tt_kevent);
    //设备描述符的bDeviceProtocol 字段
    switch (hdev->descriptor.bDeviceProtocol) {
        //HUB是一个低速/全速设备
        case 0:
            break;
        //只有一个TT
        case 1:
            dev_dbg(hub_dev, "Single TT\n");
            hub->tt.hub = hdev;
            break;
        //多个TT   
        case 2:
            //为接口选取1号设置
            ret = usb_set_interface(hdev, 0, 1);
            if (ret == 0) {
                dev_dbg(hub_dev, "TT per port\n");
                hub->tt.multi = 1;
            } else
                dev_err(hub_dev, "Using single TT (err %d)\n",
                    ret);
            hub->tt.hub = hdev;
            break;
        default:
            dev_dbg(hub_dev, "Unrecognized hub protocol %d\n",
                hdev->descriptor.bDeviceProtocol);
            break;
    }
 
    /* Note 8 FS bit times == (8 bits / 12000000 bps) ~= 666ns */
    //TT think time,
    switch (wHubCharacteristics & HUB_CHAR_TTTT) {
        case HUB_TTTT_8_BITS:
            if (hdev->descriptor.bDeviceProtocol != 0) {
                hub->tt.think_time = 666;
                dev_dbg(hub_dev, "TT requires at most %d "
                        "FS bit times (%d ns)\n",
                    8, hub->tt.think_time);
            }
            break;
        case HUB_TTTT_16_BITS:
            hub->tt.think_time = 666 * 2;
            dev_dbg(hub_dev, "TT requires at most %d "
                    "FS bit times (%d ns)\n",
                16, hub->tt.think_time);
            break;
        case HUB_TTTT_24_BITS:
            hub->tt.think_time = 666 * 3;
            dev_dbg(hub_dev, "TT requires at most %d "
                    "FS bit times (%d ns)\n",
                24, hub->tt.think_time);
            break;
        case HUB_TTTT_32_BITS:
            hub->tt.think_time = 666 * 4;
            dev_dbg(hub_dev, "TT requires at most %d "
                    "FS bit times (%d ns)\n",
                32, hub->tt.think_time);
            break;
    }
 
    /* probe() zeroes hub->indicator[] */
    //是否支持连接端口LED
    if (wHubCharacteristics & HUB_CHAR_PORTIND) {
        hub->has_indicators = 1;
        dev_dbg(hub_dev, "Port indicators are supported\n");
    }
    //bPwrOn2PwrGood字段表示连接端口从开机到准备好的时间
    dev_dbg(hub_dev, "power on to power good time: %dms\n",
        hub->descriptor->bPwrOn2PwrGood * 2);
 
    /* power budgeting mostly matters with bus-powered hubs,
     * and battery-powered root hubs (may provide just 8 mA).
     */
     //Get_Status 设备
    ret = usb_get_status(hdev, USB_RECIP_DEVICE, 0, &hubstatus);
    //Get_Status失败
    if (ret < 2) {
        message = "can't get hub status";
        goto fail;
    }
    //设备的status包含两个部份:bit 0 表示使用自身电源bit 1是远程唤醒字段
    le16_to_cpus(&hubstatus);
    //如果是root hub
    if (hdev == hdev->bus->root_hub) {
        //如果电流没有限制
        if (hdev->bus_mA == 0 || hdev->bus_mA >= 500)
            hub->mA_per_port = 500;
        //有限制的情况下
        else {
            hub->mA_per_port = hdev->bus_mA;
            hub->limited_power = 1;
        }
    }
    //如果使用总线电流
    else if ((hubstatus & (1 << USB_DEVICE_SELF_POWERED)) == 0) {
        dev_dbg(hub_dev, "hub controller current requirement: %dmA\n",
            hub->descriptor->bHubContrCurrent);
        hub->limited_power = 1;
        if (hdev->maxchild > 0) {
            int remaining = hdev->bus_mA -
                    hub->descriptor->bHubContrCurrent;
 
            if (remaining < hdev->maxchild * 100)
                dev_warn(hub_dev,
                    "insufficient power available "
                    "to use all downstream ports\n");
            hub->mA_per_port = 100;     /* 7.2.1.1 */
        }
    }
    // 如果使用本身电流
    else {  /* Self-powered external hub */
        /* FIXME: What about battery-powered external hubs that
         * provide less current per port? */
        hub->mA_per_port = 500;
    }
    if (hub->mA_per_port < 500)
        dev_dbg(hub_dev, "%umA bus power budget for each child\n",
                hub->mA_per_port);
    //Get hub status
    //hub 状态位和改变位
    ret = hub_hub_status(hub, &hubstatus, &hubchange);
    if (ret < 0) {
        message = "can't get hub status";
        goto fail;
    }
 
    /* local power status reports aren't always correct */
    //自身供电
    if (hdev->actconfig->desc.bmAttributes & USB_CONFIG_ATT_SELFPOWER)
        dev_dbg(hub_dev, "local power source is %s\n",
            (hubstatus & HUB_STATUS_LOCAL_POWER)
            ? "lost (inactive)" : "good");
    //不支持过电流保护
    if ((wHubCharacteristics & HUB_CHAR_OCPM) == 0)
        dev_dbg(hub_dev, "%sover-current condition exists\n",
            (hubstatus & HUB_STATUS_OVERCURRENT) ? "" : "no ");
 
    /* set up the interrupt endpoint
     * We use the EP's maxpacket size instead of (PORTS+1+7)/8
     * bytes as USB2.0[11.12.3] says because some hubs are known
     * to send more data (and thus cause overflow). For root hubs,
     * maxpktsize is defined in hcd.c's fake endpoint descriptors
     * to be big enough for at least USB_MAXCHILDREN ports. */
     
     //设备中断控制传输的urb
     //通道和最大包长度
    pipe = usb_rcvintpipe(hdev, endpoint->bEndpointAddress);
    maxp = usb_maxpacket(hdev, pipe, usb_pipeout(pipe));
 
    if (maxp > sizeof(*hub->buffer))
        maxp = sizeof(*hub->buffer);
    //分配urb
    hub->urb = usb_alloc_urb(0, GFP_KERNEL);
    if (!hub->urb) {
        message = "couldn't allocate interrupt urb";
        ret = -ENOMEM;
        goto fail;
    }
    //填充urb
    usb_fill_int_urb(hub->urb, hdev, pipe, *hub->buffer, maxp, hub_irq,
        hub, endpoint->bInterval);
    hub->urb->transfer_dma = hub->buffer_dma;
    hub->urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
 
    /* maybe cycle the hub leds */
    if (hub->has_indicators && blinkenlights)
        hub->indicator [0] = INDICATOR_CYCLE;
    //驱动hub
    hub_power_on(hub);
    //激活hub
    hub_activate(hub);
    return 0;
 
fail:
    dev_err (hub_dev, "config failed, %s (err %d)\n",
            message, ret);
    /* hub_disconnect() frees urb and descriptor */
    return ret;
}
这个函数先初始化struct usb_hub中的几个指针,为之分配空间,然后,取得hub的描述符,再根据取得的描述符信息再初始化和显示一些调试信息.其中的一些成员赋值等我们用到的时候再来进行分析.这个函数的后面关于urb部份和后面调用的两个子函数才是我们要分析的重点.
在这里,顺带提一下HUB的指示灯问题.
Hub描述符的wHubCharacteristics的bit7来描述设备是否支持显示灯.为1表示在下游的连接端口上支持显示灯,为0则不支持.
如果Hub支持指示灯,则将hub->has_indicators置为1.另外,HUB的指示灯是否起作用,还由一个参数决定,在代码中,大家也看到,这个参数是blinkenlights.这个参数定义如下:
static int blinkenlights = 0;
module_param (blinkenlights, bool, S_IRUGO);
MODULE_PARM_DESC (blinkenlights, "true to cycle leds on hubs");
这是一个可调的模块参数.如果要显示灯起作用,必须要将其置为1才可以.我们可以用下面两种方法来设置这个参数:
1:如果模块没有编译进kernel,可以在插入模块的时候,加上这个参数:
    modprobe usbcore blinkenlights=1
2:如果模块已经编进kernel,那在kernel的启动参数上加上如下参数:
    usbcore.blinkenlights=1
在usb2.0 spec中,对不同情况下的灯颜色都做了定义.
在代码中,灯的显示交给了一延迟的工作队列进行处理,初始化如下所示:
INIT_DELAYED_WORK(&hub->leds, led_work); (在hub_probe()函数中)
在这里,并不打算详细分析这一部份,有兴趣的可以跟踪下去看下.
 
那函数后面初始化的URB是用来干什么的呢?我们将这个URB的初始化部份单独列出如下:
pipe = usb_rcvintpipe(hdev, endpoint->bEndpointAddress);
    maxp = usb_maxpacket(hdev, pipe, usb_pipeout(pipe));
    if (maxp > sizeof(*hub->buffer))
        maxp = sizeof(*hub->buffer);
我们从此可以看出,这个URB是作用于ep0之外的另一个端点,而且传输数据的长度最大为sizeof(*hub->buffer)
Hub->buffer被定义如下:
struct usb_hub {
    ……
    char            (*buffer)[8];
    ……
}
由此可以看出buffer是指向一个8元素字符数组的指针,sizeof(*hub->buffer)等于0.
关于传输的数据长度,代码中有一段注释,这段注释说,spec上规定的长度是(PORTS+1+7)/8.而linux中,对每个hub上挂有认为最多的端口进行处理,因些,就是(31+1+7)/8 = 5
为什么这里要是8呢?
因为usb2.0 spec上规定,ep0的最大发包长度,可能为8.16.32.64.512.所以选择比5要大的最小值8.
另外,我们注意到,URB完成之后,所要调用的函数是hub_irq().如下所示:
usb_fill_int_urb(hub->urb, hdev, pipe, *hub->buffer, maxp, hub_irq,
        hub, endpoint->bInterval);
UHCI必须要知道HUB的端口的一些连接状态,因此,需要HUB周期性的上报它的端口连接状态.这个URB就是用来做这个用途的.UHCI周期性的发送IN方向中断传输传输给HUB.HUB就会通过这个URB将端口信息发送给HUB.
那这个轮询周期是多长呢?根据我们之前分析的UHCI的知识,它的调度周期是由endpoint的bInterval 字段所决定的.
 
现在,我们慢慢来接触到hub的一些核心处理了.整理一下心情,继续看代码.^_^
接下来,我们要看到的第一个函数是hub_power_on().代码如下:
static void hub_power_on(struct usb_hub *hub)
{
    int port1;
    //从连接端口从开机到准备好的时间
    unsigned pgood_delay = hub->descriptor->bPwrOn2PwrGood * 2;
    //wHubCharacteristics字段
    u16 wHubCharacteristics =
            le16_to_cpu(hub->descriptor->wHubCharacteristics);
 
    /* Enable power on each port.  Some hubs have reserved values
     * of LPSM (> 2) in their descriptors, even though they are
     * USB 2.0 hubs.  Some hubs do not implement port-power switching
     * but only emulate it.  In all cases, the ports won't work
     * unless we send these messages to the hub.
     */
     //开关模式
    if ((wHubCharacteristics & HUB_CHAR_LPSM) < 2)
        dev_dbg(hub->intfdev, "enabling power on all ports\n");
    else
        dev_dbg(hub->intfdev, "trying to enable port power on "
                "non-switchable hub\n");
    //给每一个端口发送PORT_POWER的Set_Feature消息
    for (port1 = 1; port1 <= hub->descriptor->bNbrPorts; port1++)
        set_port_feature(hub->hdev, port1, USB_PORT_FEAT_POWER);
 
    /* Wait at least 100 msec for power to become stable */
    //等待端口可以正常工作,至少100 ms
    msleep(max(pgood_delay, (unsigned) 100));
}
这里就是给每个接口发送PORT_POWER的Set_Feature消息,告之可起来工作了,然后等待端口可以工作.
 
另外要分析的函数是hub_activate().代码如下:
static void hub_activate(struct usb_hub *hub)
{
    int status;
 
    hub->quiescing = 0;
    hub->activating = 1;
 
    //提交urb
    status = usb_submit_urb(hub->urb, GFP_NOIO);
    if (status < 0)
        dev_err(hub->intfdev, "activate --> %d\n", status);
    if (hub->has_indicators && blinkenlights)
        schedule_delayed_work(&hub->leds, LED_CYCLE_PERIOD);
 
    /* scan all ports ASAP */
    kick_khubd(hub);
}
首先 ,是在hub的两个字段进行赋值操作,hub-> quiescing 和 hub->activating表示分别表示hub处理暂停和活跃状态.注意,在这里,不要和接口的mark_active()设置的intf->is_active相混淆.
然后,将hub->urb提交.开始调度Led的工作队列.
最后,流程转入kick_khubd().代码如下:
static void kick_khubd(struct usb_hub *hub)
{
    unsigned long   flags;
 
    /* Suppress autosuspend until khubd runs */
    //pm_usage_cnt设置为1,防止autosuspend
    to_usb_interface(hub->intfdev)->pm_usage_cnt = 1;
 
    spin_lock_irqsave(&hub_event_lock, flags);
    if (!hub->disconnected && list_empty(&hub->event_list)) {
        list_add_tail(&hub->event_list, &hub_event_list);
        wake_up(&khubd_wait);
    }
    spin_unlock_irqrestore(&hub_event_lock, flags);
}
在这个函数中,先将接口的pm_usage_cnt置1,此后,该接口就不能SUSPEND.
然后,将该hub添加进hub_event_list链表,并唤醒Khubd_wait等待队列.
hub_event_list和Khubd_wait到底代表着什么呢?它后面的参数又是什么呢?接着往下看…

你可能感兴趣的:(linux,struct,String,list,interface,Descriptor)